倍可親

標題: 曲度編著:細胞死亡通道悖論-Cell death pathway paradox [列印本頁]

作者: huabin    時間: 2015-4-20 03:22
標題: 曲度編著:細胞死亡通道悖論-Cell death pathway paradox
本帖最後由 huabin 於 2015-4-20 03:40 編輯

(原創)

曲度編著:細胞死亡通道悖論(Cell death pathway paradox)與細胞凋亡通路悖論(Apoptosis pathway paradox)

XXX與XXX兩位站友,貼上了他人的幾篇有關"細胞凋亡通路"研究方面的最新文章!
本文首次提出"細胞死亡通道悖論"與"細胞凋亡通路悖論"這兩個新概念.
在科學研究史上,一旦某一研究領域發現"悖論"的情況;其通常意味著:
1.該領域研究現已廣泛深入,人類業已積累不少正反經驗!
2.該領域研究正面臨著一場新的革 命之前兆!
3.該領域研究可能即將產生一個比較正確的全新理論體系!
"細胞凋亡通路悖論"發現,其結果是否如此,讓我們視目以待!

D.QU IN PARIS
版權所有!

D.QU:細胞死亡通道(細胞凋亡,自噬,壞死與其他)之全面介紹!
1.膜死亡受體通路之"細胞凋亡通路悖論"(例如CD95):
Chen L, Park SM, Tumanov AV, ET AL:CD95 promotes tumour growth,Nature. 2010 May 27;465(7297):492-6.

2.線粒體通路之"細胞凋亡通路悖論"(例如p53,PUMA等):
1).PUMA
Labi V, Erlacher M, Krumschnabel G, ET AL Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev. 2010 Aug 1;24(15):1602-7.
2).p53
Michalak EM, Vandenberg CJ, Delbridge AR, ET AL:Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death,Genes Dev. 2010 Aug 1;24(15):1608-13.

3).其他...

......

附: XXX:

經典的細胞凋亡有兩條通路,一條是膜死亡受體通路(例如CD95),另一條是線粒體通路(例如p53,PUMA等)。
傳統的觀點認為凋亡基因抑制了腫瘤生長,但是近期一些研究顛覆了這個理論,即凋亡基因促進了某些條件下腫瘤的生長和形成,這無疑是一個值得深入探討的問題。

-----------------------------------------------

D.QU:細胞死亡通道(細胞凋亡,自噬,壞死與其他)之全面介紹!

一般認為:細胞死亡包括程序性細胞死亡與非程序性細胞死亡兩大類型!後者指的是傳統的"細胞壞死"概念!

程序性細胞死亡包括細胞凋亡(apoptosis)、自噬性細胞死亡(autophagic cell death)、類凋亡(paraptosis)、有絲分裂災難(mitotic catastrophe)、脹亡(oncosis)、凋亡樣程序性細胞死亡(model of apoptosis-like)和壞死樣程序性細胞死亡(model of necrosis-like)等。
國內70年代中期與末期的高等醫學院校"病理學"統編教材僅涉及細胞壞死之概念!
自1972年Kerr等三位科學家首次提出了"細胞凋亡"概念以來,關於細胞死亡的各種通道問題,引起了基礎與臨床醫學越來越廣泛的重視!
本文內容償試對"細胞死亡通道(細胞凋亡,自噬,壞死與其他)"做一全面概述!
  D.QU

--------------------------------------------------------------------------------------------------


D.QU:自噬"autophagy"與凋亡"apoptosis"在Pubmed所記錄的文獻數量比較I-II

1.自噬(autophagy)與凋亡(apoptosis)在Pubmed所記錄的文獻數量大致比較表1

---------------------------------------------------------------------
.................凋亡(apoptosis) 自噬(autophagy)
---------------------------------------------------------------------
半年之內: 10248篇 ........ 896篇

一年之內: 19378篇 ........ 1616篇

二年之內: 36510篇 ........ 2810篇

三年之內: 53402篇 ........ 3624篇

五年之內: 85123篇 ........ 4551篇

十年之內: 150401篇 ........ 5207篇
-----------------------------------------------------------------------
全部文獻: 189904篇(72年始) 6131篇(65年始)
-----------------------------------------------------------------------

2.自噬(autophagy)與凋亡(apoptosis),Pubmed所記錄的文獻數量年代比較表2
----------------------------------------------------------------------
...............................凋亡(apoptosis) 自噬(autophagy)
----------------------------------------------------------------------
1960.1.1—1969。12.31..............0篇.................2篇
1970.1.1—1979。12.31............35篇...............145篇
1980.1.1—1989。12.31..........246篇...............356篇
1990.1.1—1999。12.31.......31327篇...............316篇
2000.1.1—2009。12.31.....145428篇..............4093篇
最近一年:
2001.1.1—2010。12.31......15327篇..............1351篇
-----------------------------------------------------------------------

注1:此表數字系在查Pubmed時得出,為何與上表總數有差異不甚清楚.
注2:該表版權保留!如引用請註明出處!

-----------------------------------------------------------------------------------------------



我們先從幾種細胞死亡通道之鑒定方法談起!

D.QU編譯:

細胞死亡通道(凋亡,自噬與壞死)在形態學,生物化學與分子通道方面之鑒定方法!
---------------------------------------------------------------------------------
Charateristic----------------------Apoptosis----Autophagy----Necrosis
-------------------------------------(type I PCD) (typeII PCD)
特 征 -------------------------------細胞凋亡-----細胞自噬-----細胞壞死
-----------------------------------------I型PCD-------II型PCD

---------------------------------------------------------------------------------
一.Morphological changes
形態學改變
1.nucleus fragmentation---------------(+)----------(-)-----------(-)
核碎片
2.chromatin condensation-------------(+)----------(-)-----------(-)
染色質凝聚
3.apoptotic body formation------------(+)----------(-)-----------(-)
凋亡小體形成
4.cytoplasmic vacuolation-------------(-)----------(+)-----------(+)
胞漿空泡變
5.organelle degradation----------------(-)----------(+)-----------(+)
細胞器降解
6.mitochodrial swelling--------------有時---------較晚----------(+)
線粒體腫脹
7.cytoplasmic swelling and -----------(-)----------(-)-----------(+)
membrane breakdown
細胞質腫脹和細胞膜破裂

二.Biochemical feacture
生物化學特點
1.Caspase activity (Caspase 3 )-----(+)----------(-)-----------(-)
Caspase 活性(Caspase 3)
2.PARP---------------------------------分裂----------(+)----------活化
聚(ADP -核糖)聚合酶
3.Iysosomal activity --------------------(-)----------(+)-----------(-)
(cathepsin B )
溶酶體活性(組織蛋白酶B)

三.Molecular pathway
分子的通道
1.DAP-------------------------------------(+)----------(+)-----------(+)
死亡相關蛋白
2.P13K,mTOR--------------------------(-)-----------(+)
3.Bcl-2 protein and cytochrome C--(+)-----------(-)
Bcl-2 蛋白與細胞色素C
---------------------------------------------------------------------------------
注1: PCD=程序性細胞死亡
注2: 資料來源:神經外科焦點(美國神經外科協會)

D.QU 該譯版權保留!
作者: huabin    時間: 2015-4-20 03:48
標題: 曲度:自噬"autophagy"與凋亡"apoptosis"的文獻數量比較


曲度:自噬"autophagy"與凋亡"apoptosis"在Pubmed所記錄的文獻數量比較
---------------------------------------------------------------------

.................凋亡(apoptosis) 自噬(autophagy)

---------------------------------------------------------------------

半年之內: 10248篇 .................. 896篇

一年之內: 19378篇 ................ 1616篇

二年之內: 36510篇 ................ 2810篇

三年之內: 53402篇 ................ 3624篇

五年之內: 85123篇 ................ 4551篇

十年之內:  150401篇 ................ 5207篇

-----------------------------------------------------------------------

全部文獻:  189904篇(72年始)6131篇(65年始)

-----------------------------------------------------------------------

注:版權保留!(如引用請註明出處)



-----------------------------------------------------------------------



根據上表數據,可以得出下面一個比較結果:


一.關於凋亡與自嗜兩者論文增長情況:

1.從近一年到近半年之間:有關凋亡的論文增長了1.89倍; 有關自嗜的論文增長了1.80倍;

2.從近二年到近一年之間:有關凋亡的論文增長了1.88倍; 有關自嗜的論文增長了1.73倍;

3.從近三年到近二年之間:有關凋亡的論文增長了1.46倍; 有關自嗜的論文增長了1.28倍;

4.從近五年到近三年之間:有關調亡的論文增長了1.59倍; 有關自噬的論文增長了1.26倍;

二.關於凋亡與自嗜兩者論文總數情況:

細胞調亡論文189904篇/細胞自嗜論文6131篇=30.81倍


D.QU

作者: huabin    時間: 2015-4-20 03:53

一."細胞凋亡"概念:

細胞凋亡是基因調控的主動過程,典型的細胞凋亡過程涉及一系列胱天蛋白酶(caspase)的水解、活化和信號傳遞過程。細胞凋亡一詞最早是由英國科爾等於1972年提出的。

一).正常情況下:

細胞凋亡與胚胎髮育、組織發生、組織分化和修復等過程有緊密的聯繫。為適應發育或組織更新的需要,機體中的細胞會在某些特定的時刻發生凋亡。例如:

1.人的唯一透明組織——眼球晶狀體的發育,在胎兒形成早期階段,由幹細胞發育來的晶狀體細胞與其他所有細胞一樣都含有細胞器,但隨著發育和分化的進展,晶狀體細胞發生特殊形式的凋亡,胞質中的細胞核和細胞器被毀壞,只保留完整的細胞膜,細胞膜內包裹著極濃稠的「晶狀體蛋白質」溶液,成為成熟的晶狀體。

2.人的皮膚外層細胞的形成過程中,皮膚細胞生成於皮膚深層,然後慢慢向外表面遷移,遷移途中有些會發生凋亡,凋亡細胞就會形成具有保護作用的皮膚角質層。

3.人類胎兒期腎上腺皮質的發育中,胚胎期腎上腺皮質原由胎兒皮質和永久皮質兩部分組成,但在胎兒出生后,其胎兒皮質細胞即發生凋亡,一周內全部消失,只留下永久皮質。

4.在成年階段,細胞凋亡機制也是機體用於清除體內多餘的、受損的、癌變的或被微生物感染的細胞的重要手段。如T淋巴細胞在胸腺成熟過程中,約有95%以上不成熟的細胞發生凋亡,只有不到5%的細胞分化為成熟的T淋巴細胞進入外周血,併發揮其免疫學功能。因此,細胞凋亡具有保證個體正常發育、維持正常生理功能,並使機體適應內外環境變化的重要生理意義。

注:希臘語中,apo的意思是脫離,ptosis的意思為落下,將這兩個片語合(apoptosis)用來描述與秋葉落下和花兒凋謝類似的細胞死亡現象。

二).病理情況下:

細胞凋亡調節失控或錯誤將會引起生物體的發育異常、功能紊亂和嚴重疾病。

1.與細胞凋亡相關的疾病如濾泡性淋巴瘤、乳腺癌和白血病等惡性腫瘤,系統性紅斑狼瘡和腎炎等自身免疫性疾病,腺病毒和皰疹病毒感染的疾病等,均與細胞凋亡缺陷(「該死不死」)有關;
2.而阿爾茨海默病、帕金森氏病和小腦退化症等神經退行性疾病、骨髓發育不全性疾病、缺血性損傷和酒精中毒性肝炎等則與細胞凋亡過度(「不該死的死了」)有關。

------------------------------------------------------------------

二."細胞自噬"概念

60年代即已發現細胞自噬"現象,它是指細胞內的溶酶體降解自身細胞器和其他大分子的過程。當細胞在缺乏營養或發生應激反應時,可發生細胞自噬現象。

一).正常情況下:

1.細胞開始自噬時,細胞質中形成大量由雙層膜包裹著的待降解物質的泡狀結構,稱自噬泡。隨後,自噬泡與溶酶體發生融合,自噬泡所包裹著的待降解物質進入溶酶體,此時的溶酶體稱作自噬溶酶體。在自噬溶酶體中,待降解物質在各種酶的作用下分解成氨基酸和核苷酸等,並進入三羧酸循環,產生小分子和能量(ATP),再被細胞所利用。

2.因此,長期以來細胞自噬被認為是細胞的自救行為,溶酶體參與其中的全過程。但近年發現,在某些條件下,細胞自噬也能導致細胞死亡,並證明自噬的發生受多種基因的嚴格調控,如ATG(autophagy)基因、蛋白激酶基因和磷酸酶基因等。

3.自噬也是細胞適應內外環境或滿足自身發育需要的一種調節方式。

二).病理情況下:

細胞自噬與疾病的發生髮展有密切的關係。

1.在機體受到脊髓灰質炎病毒和SARS冠狀病毒等病原體感染時,細胞自噬具有雙重作用。一方面,細胞自噬能將進入胞內的病原體,通過降解作用加以清除,保護正常細胞不被感染;另一方面,細胞自噬形成的自噬泡雙層膜結構成為病毒或細菌的「避難所」,使其逃避宿主的清除作用。

2.在心肌和骨骼肌中,過度自噬會導致α-葡糖苷酶缺失,引起糖原分解障礙,使糖原發生堆積,導致Ⅱ型糖元貯積病的發生。在神經細胞中變性蛋白的過度堆積是帕金森病、阿爾茨海默病和亨廷頓病等神經退行性疾病的主要病理特徵。患病早期,被激活的細胞自噬行為能清除這些變性蛋白,但隨著病情的發展,當變性蛋白的積累速率超過自噬的清除能力,就會引起自噬的過度激活,發生自噬性細胞死亡,加重病情發展。

3.在腫瘤惡性病變中,癌細胞是正常機體中的異質細胞,其中的某些基因受環境的改變或抗癌藥物的誘導可激活細胞自噬,抑制癌細胞的增殖。但在腫瘤發生初期,由於癌前細胞的快速增長,會造成營養和氧氣供應不足,細胞自噬作用可通過降解大分子或細胞器給腫瘤細胞補充營養,從而使腫瘤細胞存活和增殖。最新的研究表明,細胞自噬與衰老也有密切關係。因此,細胞自噬對人類健康是一把雙刃劍。

引自鏈接:
http://www.kexuemag.com/artdetail.asp?name=1003


作者: huabin    時間: 2015-4-20 03:56
先澄清一些基本概念,看看教科書怎麼說的!


細胞死亡

  細胞因受嚴重損傷而累及胞核時,呈現代謝停止、結構破壞和功能喪失等不可逆性變化,此即細胞死亡。死亡的原因很多,一切損傷因子只要作用達到一定強度或持續一定時間,從而使受損組織的代謝完全停止,就會引起細胞、組織的死亡。在多數情況下,壞死是由組織、細胞的變性逐漸發展來的,稱為漸進性壞死。在此期間,只要壞死尚未發生而病因被消除,則組織、細胞的損傷仍可恢復(可復期)。但一旦組織、細胞的損傷嚴重,代謝紊亂,出現一系列的形態學變化時,則損傷不能恢復(不可復期)。在個別情況下,由於致病因子極為強烈,壞死可迅速發生,有時甚至可無明顯的形態學改變。細胞死亡包括壞死和凋亡兩大類型。

注:現在一般認為細胞死亡包括非程序性細胞死亡(細胞壞死)和程序性細胞死亡(後者包括:凋亡,自噬等很多子分類)兩大類型!  

一.壞死

  壞死是活體內範圍不等的局部細胞死亡。死亡細胞的質膜崩解,結構自溶,並引發急性炎症反應。
  壞死的基本病變是在細胞死亡後幾小時,在光鏡下可見壞死細胞呈現自溶性變化,細胞核的改變是細胞壞死的主要形態學標誌,細胞核一般依序呈現核固縮、核碎裂、核溶解。
  在複習時要重點掌握壞死的類型,壞死可分為凝固性壞死、液化性壞死和纖維素樣壞死三基本類型,前兩種壞死又有一些特殊類型。
  1)凝固性壞死:壞死細胞的蛋白質凝固,還常保持其結構輪廓,所以稱為凝固性壞死,鏡下,在較早期可見壞死組織的細胞結構消失,但組織結構的輪廓仍保存。例如腎的貧血性梗死初期,雖然細胞已呈壞死改變,但腎小球、腎小管以及血管等的輪廓仍可辨認。凝固性壞死好發於心肌、肝、脾、腎等。
  凝固性壞死的特殊類型:
  ①乾酪樣壞死:是由結核桿菌引起的徹底的凝固性壞死,是結核病的特徵性病變。肉眼觀:壞死呈白色或微黃,細膩,形似乳酪。鏡下:不見壞死部位原有組織結構的殘骸,甚至不見核碎屑,只見一些無定形的顆粒狀物質。
  ②壞疽:是身體內直接或間接地與外界大氣相通部位的較大範圍壞死,並因有***菌生長而繼發***。壞疽又分為乾性壞疽、濕性壞疽、氣性壞疽三個類型。
  乾性壞疽是凝固性壞死加上壞死組織水分蒸發變乾的結果,大多見於四肢末端,水分容易蒸發的體表組織壞死,例如動脈粥樣硬化、血栓閉塞性脈管炎和凍傷等疾患。此時動脈受阻而靜脈仍通暢,再加上空氣蒸發,所以病變部位乾枯皺縮,呈黑褐色,***菌感染一般較輕,與周圍健康組織有明顯的分界線。
  濕性壞疽多發生於與外界溝通但水分不易蒸發的內臟壞死,如壞疽性闌尾炎,腸性壞疽等。濕性壞疽由於壞死組織含水分較多,適合***菌生長繁殖,故***菌感染嚴重,局部明顯腫脹,呈深藍、暗綠或烏黑色。由於病變發展較快,炎症比較瀰漫,故壞死組織與周圍健康組織分界不明顯。同時組織***壞死所產生的毒性產物,可引起嚴重的全身中毒癥狀。常見的濕性壞疽有壞疽性闌尾炎、腸壞疽、肺壞疽及產後壞疽性子宮內膜炎等。四肢當其動脈閉塞而靜脈迴流又受阻,伴有淤血水腫時也可發生濕性壞疽。
  氣性壞疽主要見於嚴重的深達肌肉的開放性創傷合併產氣莢膜桿菌、惡性水腫桿菌等產氣菌感染時細菌分解壞死組織產生大量氣體,使壞死組織內含氣泡呈蜂窩狀。氣性壞疽發展迅速,後果嚴重,需緊急處理。
  2)液化性壞死:是壞死組織因酶分解而變為液態。最常發生在含可凝固的蛋白少和脂質多的腦和骨髓,也稱為軟化。化膿,脂肪壞死和由細胞水腫而來的溶解性壞死都屬於液化性壞死。
  脂肪壞死是液化性壞死的特殊類型,主要分為外傷性脂肪壞死和酶解性脂肪壞死兩種。外傷性脂肪壞死好發於皮下脂肪組織尤其是女性乳房,脂肪細胞破裂,脂肪外溢,引起巨噬細胞和異物巨細胞吞噬脂質,反應局部形成腫塊,鏡下可見其中含有大量含有脂滴的巨噬細胞(泡沫細胞)和多核異物巨細胞。酶解性者見於急性胰腺炎。此時胰腺組織受損,胰酶外逸並被激活,從而引起胰腺自身消化和胰腺周圍器官的脂肪組織被胰脂酶分解,其中的脂肪酸與組織中的鈣結合形成鈣皂,表現為不透明的斑點和斑塊。
  3)纖維素樣壞死:曾稱為纖維素樣變性,好發於結締組織和血管壁,是變態反應性結締組織病(風濕病、類風濕性關節炎、系統性紅斑狼瘡、結節性多動脈炎)和急進性高血壓的特徵性病變。壞死組織呈細絲、顆粒狀紅染的纖維素樣,聚集成片狀。
  壞死的結局:不同原因引起的不同組織的壞死,其結局也不一樣,細胞壞死後發生自溶,並在壞死局部引發急性炎症反應,壞死組織有的溶解吸收,有的分離排出、機化、包裹或鈣化,結核病灶的乾酪樣壞死常發生包裹鈣化。
  1)溶解吸收:壞死組織溶解,經由淋巴管、血管吸收或被巨噬細胞清除。小範圍壞死可被完全吸收,消除較大範圍壞死液化后可形成囊腔。
  2)分離排出:較大壞死組織不能完全吸收,則發生炎性反應,使壞死組織與健康組織分離形成缺損。皮膚、粘膜較深的壞死性缺損形成潰瘍,發生在內臟器官則形成空洞。
  3)機化:壞死組織不能完全溶解吸收或分離排出,則由新生毛細血管和纖維母細胞等組成肉芽組織,吸收、取代壞死物的過程稱機化,最後形成瘢痕組織。
  4)包裹、鈣化:壞死組織較大或難以溶解吸收或不完全機化,則由周圍結締組織加以包裹,其中的壞死組織如結核病灶的乾酪樣壞死也可發生鈣化。

二.凋亡
  凋亡大多為生理性死亡,是細胞衰老過程中各個細胞功能逐漸減退的結果。凋亡可見於許多生理和病理過程中,如各種更替性組織衰亡更新,也可見於照射及應用細胞抑製劑和數目性萎縮之時。腫瘤細胞也發生凋亡。這種壞死是活體內單個細胞或小團細胞的死亡,不是整個實質區內細胞同時死亡,死亡細胞的質膜(細胞膜和細胞器膜)不破裂,不引發死亡細胞的自溶也不引起急性炎症反應。凋亡的發生與基因調節有關。也有人稱為程序性死亡(PCD)。凋亡對人體的生理平衡和疾病的發生具有重要意義。

  電鏡下凋亡的細胞皺縮,質膜完整,胞漿緻密,細胞器密集,不同程度退變,核染色質緻密形成大小不一的團塊邊集於核膜處,進而核裂解,胞漿多發性芽突,並迅速脫落形成凋亡小體。凋亡小體迅速在局部被吞噬細胞吞噬,光鏡下凋亡小體多呈圓形、卵圓形,大小不等,胞漿濃縮,強嗜酸性,故有人稱之為嗜酸性小體。病毒性肝炎中所見的嗜酸性小體實為肝細胞的凋亡小體。


作者: huabin    時間: 2015-4-20 04:07
標題: 曲度譯:檢測細胞自噬和確定其誘導細胞死亡的方法
檢測細胞自噬和確定其誘導細胞死亡的方法

鏈接:http://news.dxy.cn/bbs/topic/18122814?tpg=1&age=0

Yongqiang Chen, Meghan B. Azad, Spencer B. Gibson:Methods for detecting autophagy and determining autophagy-induced cell death;Can. J. Physiol. Pharmacol. 88(3): 285–295 (2010)

Abstract:

Autophagy is an intracellular lysosomal degradation process, which in the case of macroautophagy, is characterized by the formation of double-membraned autophagosomes.
Enhanced under stress conditions, autophagy can function to promote cell survival or cell death depending on the type of cellular stress.

摘要:(英譯中)
細胞自噬是一種細胞內溶酶體降解之過程,在「巨自噬(macroautophagy)」情況下,它具有能形成雙層膜自噬體之特點。
在增加刺激條件下,細胞自噬可依據細胞刺激類型不同,或促進細胞存活或導致細胞死亡。

Interest in autophagy has increased substantially in the past several years as new research implicates this 「self-eating」 pathway in cell growth, development, and many human diseases.
Various methods have been developed for detecting autophagy; however, the implementation of these methods and the interpretation of the results often vary between studies, and a more standardized approach is required.

在過去數年中,人們已大幅度地增加了對「細胞自噬」領域之新的研究,其暗示在細胞生長發育和許多人類疾病中,存在這種「自食」通道。
為了檢測細胞自噬,人們已開發出各種方法;然而,這些方法的實施及其結果的解釋,往往在各個研究之間存在很大的差異,因此必須有一個更加規範的做法。

In this review, we summarize the current methods available for detecting autophagy and for determining its contribution to cell death.
Furthermore, we discuss the critical points for the successful application of these methods based on experiences from our laboratory and from other research groups.

在這篇綜述中,我們總結了能用於檢測細胞自噬的各種現代方法,以便確定細胞自噬對於細胞死亡的作用。
此外,基於我們的實驗室和其他研究小組之經驗,我們討論了成功應用這些方法之一些關鍵問題。

Key words: autophagy, autophagic cell death, apoptosis, necrosis, mitotic cell death, cell death
關鍵詞:自噬,細胞自噬死亡,細胞凋亡,壞死,有絲分裂細胞死亡,細胞死亡

D.QU (初譯稿)


作者: huabin    時間: 2015-4-20 04:12


為幫助對該領域研究不熟悉者,搞清楚"細胞死亡通道"全部範疇內容,
現從有關"細胞凋亡"基本概念開始介紹:

一.細胞凋亡"apoptosis"定義

鏈接:http://baike.baidu.com/view/24139.htm

細胞凋亡"apoptosis" 也稱程序性細胞死亡(programmed cell death,PCD).

定義1:指由於細胞內部程序激活而發生的自殺性死亡,是增殖的淋巴細胞被清除的主要方式;

定義2:生物體內細胞在特定的內源和外源信號誘導下,其死亡途徑被激活,並在有關基因的調控下發生的程序性死亡過程。是程序性死亡過程的一種主要形式,強調的是形態學上的改變。它涉及染色質凝聚和外周化、細胞質減少、核片段化、細胞質緻密化、與周圍細胞聯繫中斷、內質網與細胞膜融合,最終細胞片段化形成許多細胞凋亡體,被其他細胞吞入。

定義3:由死亡信號誘發的受調節的細胞死亡過程, 是細胞生理性死亡的普遍形式。凋亡過程中DNA發生片段化,細胞皺縮分解成凋亡小體,被鄰近細胞或巨噬細胞吞噬,不發生炎症。

定義4:由生理或病理信號引發的自主性的細胞清除過程。

二.細胞凋亡的研究歷史
  
1. 凋亡概念的形成

1965年澳大利亞科學家發現,結紮鼠門靜脈后,電鏡觀察到肝實質組織中有一些散在的死亡細胞這些的溶酶體並未被破壞,顯然不同於細胞壞死。這些細胞體積收縮、染色質凝集從其周圍的組織中脫落並被吞噬機體無炎症反應。
1972年Kerr等三位科學家首次提出了細胞凋亡的概念,宣告了對細胞凋亡的真正探索的開始,在此之前,關於胚胎髮育生物學、免疫系統的研究,肝細胞死亡的研究都為這一概念的提出奠定了基礎。   

2.細胞凋亡的形態學及生物化學研究階段(1972-1987)   

1)利用光鏡和電鏡對形態學特徵進行了詳細的研究。   
2)染色體DNA的降解:細胞凋亡的一個顯著特徵就是細胞染色質的DNA降解。   
3)RNA/蛋白質大分子的合成。   
4)鈣離子變化,細胞內鈣離子濃度的升高是細胞發生凋亡的一個重要條件。   
5)內源性核酸內切酶:細胞發生凋亡是需要這種核酸內切酶參與的。   

3.細胞凋亡的分子生物學研究階段(最近幾年)   
1)與細胞凋亡的相關基因及調控   
2)細胞凋亡的信號轉導   
3)與細胞凋亡的各種分子及其相互作用及相互關係   

4.細胞凋亡的臨床應用基礎研究階段

細胞凋亡的研究,其生命力在於最終能夠有利於疾病機制的闡明,以及新療法的探索及問世。


引自鏈接:
http://baike.baidu.com/view/24139.htm  


作者: huabin    時間: 2015-4-20 04:15

四.細胞凋亡的生物學特徵

1.形態學變化
  
形態學觀察細胞凋亡的變化是多階段的,細胞凋亡往往涉及單個細胞,即便是一小部分細胞也是非同步發生的。首先出現的是細胞體積縮小,連接消失,與周圍的細胞脫離,然後是細胞質密度增加,線粒體膜電位消失,通透性改變,釋放細胞色素C到胞漿,核質濃縮,核膜核仁破碎,DNA降解成為約180bp-200bp片段;胞膜有小泡狀形成,膜內側磷脂醯絲氨酸外翻到膜表面,胞膜結構仍然完整,最終可將凋亡細胞遺骸分割包裹為幾個凋亡小體,無內容物外溢,因此不引起周圍的炎症反應,凋亡小體可迅速被周圍專職或非專職吞噬細胞吞噬。

2.生物化學變化

1)DNA的片段化   

細胞凋亡的一個顯著特點是細胞染色體的DNA降解,這是一個較普遍的現象。細胞凋亡這種降解非常特異並有規律,所產生的不同長度的DN***段約為180-200bp的整倍數,而這正好是纏繞組蛋白寡聚體的長度,提示染色體DNA恰好是在核小體與核小體的連接部位被切斷,產生不同長度的寡聚核小體片段,實驗證明,這種DNA的有控降解是一種內源性核酸內切酶作用的結果,該酶在核小體連接部位切斷染色體DNA,這種降解表現在瓊脂糖凝膠電泳中就呈現特異的梯狀Ladder圖譜,而壞死呈瀰漫的連續圖譜。   

2) 大分子合成   

細胞凋亡的生化改變不僅僅是DNA的有控降解,在細胞凋亡的過程中往往還有新的基因的表達和某些生物大分子的合成作為調控因子。如我們實驗室發現的TFAR-19就是在細胞凋亡時高表達一種分子,再如在糖皮質激素誘導鼠胸腺細胞凋亡過程中,加入RNA合成抑製劑或蛋白質合成抑製劑即能抑制細胞凋亡的發生。

引自鏈接:
http://baike.baidu.com/view/24139.htm


作者: huabin    時間: 2015-4-20 04:18
五.細胞凋亡的過程及機理

細胞凋亡的過程大致可分為以下幾個階段:   接受凋亡信號→凋亡調控分子間的相互作用→蛋白水解酶的活化(Caspase)→進入連續反應過程

1.凋亡的啟動階段

細胞凋亡的啟動是細胞在感受到相應的信號刺激后胞內一系列控制開關的開啟或關閉,不同的外界因素啟動凋亡的方式不同,所引起的信號轉導也不相同,客觀上說對細胞凋亡過程中信號傳遞系統的認識還是不全面的,目前比較清楚的通路主要有:   

1)細胞凋亡的膜受體通路:

各種外界因素是細胞凋亡的啟動劑,它們可以通過不同的信號傳遞系統傳遞凋亡信號,引起細胞凋亡,我們以Fas -FasL為例:   

Fas是一種跨膜蛋白,屬於腫瘤壞死因子受體超家族成員,它與FasL結合可以啟動凋亡信號的轉導引起細胞凋亡。它的活化包括一系列步驟:首先配體誘導受體三聚體化,然後在細胞膜上形成凋亡誘導複合物,這個複合物中包括帶有死亡結構域的Fas相關蛋白FADD。 Fas又稱CD95,是由325個氨基酸組成的受體分子,Fas一旦和配體FasL結合,可通過Fas分子啟動致死性信號轉導,最終引起細胞一系列特徵性變化,使細胞死亡。Fas作為一種普遍表達的受體分子,可出現於多種細胞表面,但FasL的表達卻有其特點,通常只出現於活化的T細胞和NK細胞,因而已被活化的殺傷性免疫細胞,往往能夠最有效地以凋亡途徑置靶細胞於死地。 Fas分子胞內段帶有特殊的死亡結構域(DD, death domain)。三聚化的Fas和FasL結合后,使三個Fas分子的死亡結構域相聚成簇,吸引了胞漿中另一種帶有相同死亡結構域的蛋白FADD。FADD是死亡信號轉錄中的一個連接蛋白,它由兩部分組成:C端(DD結構域)和N端(DED)部分。DD結構域負責和Fas分子胞內段上的DD結構域結合,該蛋白再以DED連接另一個帶有DED的後續成分,由此引起N段DED隨即與無活性的半胱氨酸蛋白酶8(caspase8)酶原發生同嗜性交聯,聚合多個caspase8的分子,caspase8分子逐由單鏈酶原轉成有活性的雙鏈蛋白,進而引起隨後的級聯反應,即Caspases,後者作為酶原而被激活,引起下面的級聯反應。細胞發生凋亡。因而TNF誘導的細胞凋亡途徑與此類似   

2)細胞色素C釋放和Caspases激活的生物化學途經   

線粒體是細胞生命活動控制中心,它不僅是細胞呼吸鏈和氧化磷酸化的中心,而且是細胞凋亡調控中心。實驗表明了細胞色素C從線粒體釋放是細胞凋亡的關鍵步驟。釋放到細胞漿的細胞色素C在dATP存在的條件下能與凋亡相關因子1(Apaf-1)結合,使其形成多聚體,並促使caspase-9與其結合形成凋亡小體,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,從而誘導細胞凋亡。此外,線粒體還釋放凋亡誘導因子,如AIF,參與激活caspase。可見,細胞凋亡小體的相關組份存在於正常細胞的不同部位。促凋亡因子能誘導細胞色素C釋放和凋亡小體的形成。很顯然,細胞色素C從線粒體釋放的調節是細胞凋亡分子機理研究的關鍵問題。多數凋亡刺激因子通過線粒體激活細胞凋亡途經。有人認為受體介導的凋亡途經也有細胞色素C從線粒體的釋放。如對Fas應答的細胞中,一類細胞(type1)中含有足夠的胱解酶8 (caspase8)可被死亡受體活化從而導致細胞凋亡。在這類細胞中高表達Bcl-2並不能抑制Fas誘導的細胞凋亡。在另一類細胞(type2)如肝細胞中,Fas受體介導的胱解酶8活化不能達到很高的水平。因此這類細胞中的凋亡信號需要藉助凋亡的線粒體途經來放大,而Bid -- 一種僅含有BH3結構域的Bcl-2家族蛋白是將凋亡信號從胱解酶8向線粒體傳遞的信使。

2.凋亡的執行

儘管凋亡過程的詳細機制尚不完全清楚,但是已經確定Caspase即半胱天冬蛋白酶在凋亡過程中是起著必不可少的作用,細胞凋亡的過程實際上是Caspase不可逆有限水解底物的級聯放大反應過程,到目前為止,至少已有14種Caspase被發現,Caspase分子間的同源性很高,結構相似,都是半胱氨酸家族蛋白酶,根據功能可把Caspase基本分為二類:一類參與細胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二類參與細胞凋亡,包括caspase2,3,6,7,8,9.10。

Caspase家族一般具有以下特徵:   

1)C端同源區存在半胱氨酸激活位點,此激活位點結構域為QACR/QG。   

2)通常以酶原的形式存在,相對分子質量29000-49000(29-49KD),在受到激活后其內部保守的天冬氨酸殘基經水解形成大(P20)小(P10)兩個亞單位,並進而形成兩兩組成的有活性的四聚體,其中,每個P20/P10異二聚體可來源於同一前體分子也可來源於兩個不同的前體分子。   
3)末端具有一個小的或大的原結構域。   

參與誘導凋亡的Caspase分成兩大類: 啟動酶(inititaor)和效應酶(effector)它們分別在死亡信號轉導的上游和下游發揮作用。

Caspase活化機制

Caspase的活化是有順序的多步水解的過程,Caspase分子各異,但是它們活化的過程相似。首先在caspase前體的N-端前肽和大亞基之間的特定位點被水解去除N-端前肽,然後再在大小亞基之間切割釋放大小亞基,由大亞基和小亞基組成異源二聚體,再由兩個二聚體形成有活性的四聚體。去除N-端前肽是Caspase的活化的第一步,也是必須的,但是Caspase-9的活化不需要去除N-端前肽,Caspase活化基本有兩種機制,即同源活化和異源活化,這兩種活化方式密切相關,一般來說後者是前者的結果,發生同源活化的Caspase又被稱為啟動caspase(initiator caspase),包括caspase-8,-10,-9,誘導凋亡后,起始Caspase通過adaptor被募集到特定的起始活化複合體,形成同源二聚體構像改變,導致同源分子之間的酶切而自身活化,通常caspase-8, 10, 2介導死亡受體通路的細胞凋亡,分別被募集到Fas和TNFR1死亡受體複合物,而Caspase-9參與線粒體通路的細胞凋亡,則被募集到Cyt c/d ATP/Apaf-1組成的凋亡體(apoptosome)。同源活化是細胞凋亡過程中最早發生的capases水解活化事件,啟動Caspase活化后,即開啟細胞內的死亡程序,通過異源活化方式水解下游Caspase將凋亡信號放大,同時將死亡信號向下傳遞。異源活化(hetero-activation)即由一種caspase活化另一種caspase是凋亡蛋白酶的酶原被活化的經典途徑。被異源活化的Caspase又稱為執行caspase(executioner caspase),包括Caspase-3,-6,-7。執行Caspase不象啟動Caspase ,不能被募集到或結合起始活化複合體,它們必須依賴啟動Caspase才能活化。

Caspase的效應機制
  
凋亡細胞的特徵性表現,包括DNA裂解為200bp左右的片段,染色質濃縮,細胞膜活化,細胞皺縮,最後形成由細胞膜包裹的凋亡小體,然後,這些凋亡小體被其他細胞所吞噬,這一過程大約經歷30-60分鐘,Caspase引起上述細胞凋亡相關變化的全過程尚不完全清楚,但至少包括以下三種機制:

1.凋亡抑制物

正常活細胞因為核酸酶處於無活性狀態,而不出現DNA斷裂,這是由於核酸酶和抑制物結合在一起,如果抑制物被破壞,核酸酶即可激活,引起DN***段化(fragmentation)。現知caspase可以裂解這種抑制物而激活核酸酶,因而把這種酶稱為Caspase激活的脫氧核糖核酸酶(caspase-activated deoxyribonulease CAD),而把它的抑制物稱為ICAD。因而,在正常情況下,細胞凋亡CAD不顯示活性是因為CAD-ICAD,以一種無活性的複合物形式存在。ICAD一旦被Caspase水解,即賦予CAD以核酸酶活性,DN***段化即產生,有意義的是CAD只在ICAD存在時才能合成並顯示活性,提示CAD-ICAD以一種其轉錄方式存在,因而ICAD對CAD的活化與抑制卻是必需要的。

2.破壞細胞結構
Caspase可直接破壞細胞結構,如裂解核纖層,核纖層(Lamina)是由核纖層蛋白通過聚合作用而連成頭尾相接的多聚體,由此形成核膜的骨架結構,使染色質(chromatin)得以形成並進行正常的排列。在細胞發生凋亡時,核纖層蛋白作為底物被Caspase在一個近中部的固定部位所裂解,從而使核纖層蛋白崩解,導致細胞染色質的固縮。

3.調節蛋白喪失功能
Caspase可作用於幾種與細胞骨架調節有關的酶或蛋白,改變細胞結構。其中包括凝膠原蛋白(gelsin)、聚合粘附激酶(focal adhesion kinase ,FAK)、P21活化激酶α(PAKα)等。這些蛋白的裂解導致其活性下降。如Caspase可裂解凝膠原蛋白而產生片段,使之不能通過肌動蛋白(actin)纖維來調節細胞骨架。   除此之外,Caspase還能滅活或下調與DNA修復有關的酶、mRNA剪切蛋白和DNA交聯蛋白。由於DNA的作用,這些蛋白功能被抑制,使細胞的增殖與複製受阻併發生凋亡。   

所有這些都表明Caspase以一種有條不紊的方式進行"破壞",它們切斷細胞與周圍的聯繫,拆散細胞骨架,阻斷細胞DNA複製和修復,干擾mRNA剪切,損傷DNA與核結構,誘導細胞表達可被其他的細胞吞噬的信號,並進一步使之降解為凋亡小體。

細胞凋亡的調節

細胞凋亡受到嚴格調控,在正常細胞Caspase處於非活化的酶原狀態,凋亡程序一旦開始,Caspase被活經隨後發生凋亡蛋白酶的層疊級聯反應,發生不可逆的凋亡。細胞是如何準確而又精確調節細胞凋亡呢?舉例如下:

1.凋亡抑制分子:

迄今為止,已發現多種凋亡抑制分子,包括P35,CrmA,IAPs,FLIPs以及Bcl-2家族的凋亡抑制分子。   

1)P35和CrmA是廣譜凋亡抑製劑,體外研究結果表明P35以競爭性結合方式與靶分子形成穩定的具有空間位阻效應的複合體並且抑制Caspases活性,同時P35在位點DMQD!G被靶Caspases特異切割,切割后的P35與caspase的結合更強,CrmA(Cytokine response modfer A)是血清蛋白酶抑製劑,能夠直接抑制多種蛋白酶的活性,但目前還未發現在哺乳動物中發現P35和CrmA的同源分子。   

2)FLIPs(FLICE-imhibirory proterins)能抑制Fas/TNFR1介導的細胞凋亡。它有多種變異體,但其N-端功能前區(Prodomain)完全相同,C端長短不一。FLIPs通過DED功能區,與FADD和Caspase-8,10結合,拮抗它們之間的相互作用,從而抑制Caspase8,10募集到死亡受體複合體和它們的起始化。   

3)凋亡抑制蛋白(IAPs,inhibitors of Apoptosis protien)為一組具有抑制凋亡作用的蛋白質,首先是從桿狀病毒基因組克隆到,發現能夠抑制由病毒感染引起的宿主細胞死亡應答。其特性是有大約20氨基酸組成的功能區,這對IAPs抑制凋亡是必需要的,它們主要抑制Caspase3,-7,而不結合它的酶原,對Caspase則即可以結合活化的,又可結合酶原,進而抑制細胞凋亡。

2.Bcl-2家族:

這一家族有眾多成員,如Mcl-1、NR-B、A1 、Bcl-w、Bcl-x、Bax、Bak、Bad、Bim等,它們分別既有抗凋亡作用,也有促凋亡的作用。多數成員間有兩個結構同源區域,在介導成員之間的二聚體化過程中起重要作用。Bcl-2成員之間的二聚體化是成員之間功能實現或功能調節的重要形式。Bcl-2生理功能是阻遏細胞凋亡,延長細胞壽命,在一些白血病中Bcl-2呈過度表達。   
Bcl-2的亞細胞定位已經明確,它在不同的細胞類型可以定位於線粒體、內質網以及核膜上,並通過阻止線粒體細胞色素C的釋放而發揮抗凋亡作用。此外, Bcl-2具有保護細胞的功能, Bcl-2的過度表達可引起細胞核谷胱苷肽(GSH)的積聚,導致核內氧化還原平衡的改變,從而降低了Caspase的活性。Bax是Bcl-2家族中參與細胞凋亡的一個成員,當誘導凋亡時,它從胞液遷移到線粒體和核膜。有人研究發現,細胞毒性藥物誘發凋亡時,核膜Bax水平的上升與lamin及PARP兩種核蛋白的降解呈正相關。用Bax寡核苷酸處理的細胞,只能特異地阻斷Lamin的降解,對PARP的降解不起作用。這種效應的調控機制目前仍然不清楚。   

總之,細胞凋亡的調節是非常複雜的,參與的分子也非常多,還有很多不為我們所知的機理需要我們一步的探索。

引自鏈接:
http://baike.baidu.com/view/24139.htm


作者: huabin    時間: 2015-4-20 04:19
六.細胞凋亡與醫學


1.免疫學:

1)胸腺細胞成熟過程中的凋亡:

胸腺細胞經過一系列的發育過程而成為各種類型的免疫活性細胞。在這一發展過程中,涉及了一系列的陽性細胞選擇和陰性細胞選擇過程。以形成CD4+的T淋巴細胞亞型及CD8+的T淋巴細胞亞型;同時,對識別自身抗原的T細胞克隆進行選擇性地消除,其細胞克隆死亡的機制主要是通過程序性細胞死亡。因此,正常的免疫系統發育的結局,既形成了有免疫活性的淋巴細胞,又產生了對自身抗原的免疫耐受。耐受機制的形成,主要靠識別自身抗原的T淋巴細胞克隆的程序性細胞死亡機制的活化。   

2)活化誘導的細胞死亡(activation-induced cell death,AICD):

AICD是T淋巴細胞程序性死亡的又一個主要類型。正常的T淋巴細胞在受到入侵的抗原刺激后,細胞凋亡T淋巴細胞被激活,並誘導出一系列的免疫應答反應。機體為了防止過高的免疫應答,或防止這種免疫應答無限制地發展下去,便有AICD來控制激活T細胞的壽命。實際上:T淋巴細胞的增殖與T淋巴細胞AICD具有共同的信號通路。T淋巴細胞受到刺激后就開始活化,活化以後的T淋巴細胞如果有生長因子的存在,即發生生殖反應,如果沒有或較少的生長因子的存在,則發生AICD。3)淋巴細胞對靶細胞的攻擊:免疫活性細胞,特別是淋巴因子激活的殺傷細胞(LAK),是過繼性免疫治療的一種重要形式。在抗腫瘤、抗病毒及免疫調節中具有重要作用。這些免疫活性細胞在攻擊腫瘤細胞、病毒感染的細胞時,可誘導靶細胞發生程序性死亡。

2.臨床醫學:
  
細胞凋亡之所以成為人們研究的一個熱點,在很大程度上決定於細胞凋亡與臨床病毒的密切關係。這種關係不僅表現在凋亡及其機制的研究,闡明了一大類免疫病的發病機制,而且由此可以導致疾病新療法的出現,特別是細胞凋亡與腫瘤及愛滋病之間的密切關係倍受人們重視。   
1) HIV病毒感染造成CD4+細胞減少是通過細胞凋亡機制   HIV感染引起愛滋病,其主要的發病機制是HIV感染后特異性地破壞CD4+細胞,使CD4+以及與其相關的免疫功能缺陷,易招致機會性感染及腫瘤,但HIV感染后怎樣特異性破壞CD4+細胞呢?近年認為,CD4+T淋巴細胞絕對數顯著減少的原因,主要是通過細胞凋亡機製造成的。這不僅闡明了AIDS時CD4+T細胞減少的主要原因,同時也為AIDS的治療研究指明了一個重要的探索方向。   

2)從細胞凋亡角度看,腫瘤的發生是由於凋亡受阻所致   一般認為惡性轉化的腫瘤細胞是因為失控生長,過度增殖,從細胞凋亡的角度看則認為是腫瘤的凋亡機制受到抑制不能正常進行細胞死亡清除的結果。腫瘤細胞中有一系列的癌基因和原癌基因被激活,並呈過表達狀態。這些基因的激活和腫瘤的發生髮展之間有著及為密切的關係。癌基因中一大類屬於生長因子家族,也有一大類屬於生長因子受體家族,這些基因的激活與表達,直接刺激了腫瘤細胞的生長,這些癌基因及其表達產物也是細胞凋亡的重要調節因子許多種類的癌基因表達以後,即阻斷了腫瘤細胞的凋亡過程,使腫瘤細胞數目增加,因此,從細胞凋亡角度來理解腫瘤的發生機制,是由於腫瘤細胞的凋亡機制,腫瘤細胞減少受阻所致。因此,通過細胞凋亡角度和機制來設計對腫瘤的治療方法就是重建腫瘤細胞的凋亡信號轉遞系統,即抑制腫瘤細胞的生存基因的表達,激活死亡基因的表達。   

3)細胞凋亡的研究將給自身免疫病帶來真正的突破   自身免疫病包括一大類難治性的免疫紊亂而造成的疾病,自身反應性T淋巴細胞及產生抗體的B淋巴細胞是引起自身免疫病的主要免疫病理機制,正常情況下,免疫細胞的活化是一個極為複雜的過程。在自身抗原的刺激作用下,識別自身抗原的免疫細胞被活化,從而通過細胞凋亡的機制而得到清除。但如這一機制發生障礙,那麼識別自身抗原的免疫活性細胞的清除就會產生障礙。有人觀察到在淋巴增生突變小鼠中觀察到Fas編碼的基因異常,不能翻譯正常的Fas跨膜蛋白分子,如Fas異常,由其介導的凋亡機制也同時受阻,便造成淋巴細胞增殖性的自身免疫疾患。   

4)神經系統的退行性病變:目前知道老年性痴獃是神經細胞凋亡的加速而產生的。阿爾茨海默病(AD)是一種不可逆的退行性神經疾病,澱粉樣前體蛋白(APP)早老蛋白-1(PS1)早老蛋白-2(PS2)的突變導致家族性阿爾茨海默病(FAD)。研究證明PS參與了神經細胞凋亡的調控PS1、PS2的過表達能增強細胞對凋亡信號的敏感性。Bcl-2基因家族兩個成員Bcl-xl和Bcl-2參與對細胞凋亡的調節。


引自鏈接:
http://baike.baidu.com/view/24139.htm




作者: huabin    時間: 2015-4-20 04:22
本帖最後由 huabin 於 2015-4-20 04:23 編輯

七.細胞凋亡的檢測

1. 早期檢測:
  
1) PS(磷脂醯絲氨酸)在細胞外膜上的檢測:

細胞凋亡PS從細胞膜內側轉移到外側在細胞受到凋亡誘導后不久發生, 可能作為免疫系統的識別標誌。AnnexinV,一個鈣依賴性的磷脂結合蛋白,能專一性的結合暴露在膜外側的PS,再通過簡單的顯色或發光系統進行檢測。由於這是一種凋亡早期的活細胞檢測(懸浮細胞和貼壁細胞都適用),可與DNA染料或別的晚期檢測方法相結合來標記凋亡的發展階段。   

美國著名生物試劑公司CLONTECH和INTERGEN公司分別開發了多種標記的Annexin V產品,簡便快速,10分鐘就可完成檢測。其中帶熒游標記的Annexin V-EGFP(Enhanced Green Fluorescent Protein)及Annexin V-FITC,靈敏度高,可作為FACS(流式細胞分選)方法篩選凋亡細胞的基礎。由於融合蛋白Annexin V-EGFP,EGFP與PS 的結合比例為1:1,還可進行定量檢測。除此之外,還提供生物素偶聯的Annexin V,可通過常用的酶聯顯色反應來檢測。另外,MACS公司將磁珠包被Annexin V,可採用磁分選方法篩選凋亡細胞。   

2)細胞內氧化還原狀態改變的檢測:   

這反應了細胞凋亡研究中相對較新的趨勢,研究什麼樣的氧化還原環境引起下游事件的發生。CLONTECH公司的ApoAlertTM Glutathione Detection Kit通過熒光染料monochlorobimane(MCB)體外檢測凋亡細胞細胞質中谷光苷肽的減少來檢測凋亡早期細胞內氧化還原狀態的變化。正常狀態下,谷光苷肽(glutathione:GSH)作為細胞的一種重要的氧化還原緩衝劑。細胞內有毒的氧化物通過被GSH還原而定期去除,氧化型的GSH又可被GSH還原酶迅速還原。這一反應在線粒體中尤為重要,許多呼吸作用中副產物的氧化損傷將由此被去除。在Jurcat和一些其它類型的細胞中,細胞膜中有可被凋亡信號啟動的ATP依賴的GSH轉移系統。當細胞內GSH的排除非常活躍時,細胞液就由還原環境轉為氧化環境,這可能導致了凋亡早期細胞線粒體膜電位的降低,從而使細胞色素C(三羧酸循環中的重要組分)從線粒體內轉移到細胞液中,啟動凋亡效應器caspase的級聯反應。   由於 GSH與氧化還原作用及線粒體功能密切相關,此項檢測除了對研究細胞凋亡的起始非常有用外,還可用於心臟病、中風等疾病治療的研究。但有些細胞如:HeLa 和3T3細胞凋亡時沒有明顯的GSH水平的變化,不能用此法檢測。   

3)細胞色素C的定位檢測   

細胞色素C作為一種信號物質,在細胞凋亡中發揮著重要的作用。正常情況下,它存在於線粒體內膜和外膜之間的腔中,凋亡信號刺激使其從線粒體釋放至細胞液,結合Apaf-1 (apoptotic protease activating factor-1)后啟動caspase級聯反應:細胞色素C/Apaf-1複合物激活caspase-9,後者再激活caspase-3和其它下游caspase。細胞色素C氧化酶亞單位Ⅳ(cytochrome c oxidase subunit Ⅳ:COX4)是定位在線粒體內膜上的膜蛋白,凋亡發生時,它保留在線粒體內,因而它是線粒體富集部分的一個非常有用的標誌。   ApoAlertTMCell Fractionation Kit不用超離心,可從凋亡和非凋亡細胞中快速有效分離出高度富集的線粒體部分,再進一步通過Western雜交用細胞色素C抗體和COX4抗體標示細胞色素C和COX4的存在位置,從而判斷凋亡的發生。   

4) 線粒體膜電位變化的檢測:   

在凋亡研究的早期,從形態學觀測上線粒體沒有明顯的變化。隨著凋亡機制研究的深入,發現線粒體凋亡也是細胞凋亡的重要組成部分,發生很多生理生化變化。例如,在受到凋亡誘導后線粒體轉膜電位會發生變化,導致膜穿透性的改變。MitoSensorTM,一個陽離子性的染色劑,對此改變非常敏感,呈現出不同的熒光染色。正常細胞中,它在線粒體中形成聚集體,發出強烈的紅色熒光。凋亡細胞中,因線粒體穿膜電位的改變,它以單體形式存在於細胞液中,發出綠色熒光。用熒光顯微鏡或流式細胞儀可清楚地分辨這兩種不同的熒光信號。CLONTECH公司的ApoAlert Mitochondrial Membrane Sensor Kit就採用這種原理來檢測線粒體膜電位的變化。但是,這種方法不能區分細胞凋亡或其他原因導致的線粒體膜電位的變化。

2. 晚期檢測:
  
細胞凋亡晚期中,核酸內切酶(某些Caspase的底物)在核小體之間剪切核DNA,產生大量長度在180-200 bp 的DN***段。對於這一現象的檢測通常有以下兩種方法:   

1) TUNEL(Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling)   
通過DNA末端轉移酶將帶標記的 dNTP (多為dUTP)間接(通過地高辛)或直接接到DN***段的3』-OH端,再通過酶聯顯色或熒光檢測定量分析結果。美國Intergen公司提供多種標記方法,直接熒游標記,地高辛介導熒游標記或過氧化物酶聯顯色,可做細胞懸液、福爾馬林固定或石蠟處理的組織、細胞培養物等多種樣本的檢測。其中,直接標記步驟少,操作簡便。而間接標記有信號放大的作用,檢測靈敏度高。   

2) LM-PCR Ladder (連接介導的PCR檢測)   

當凋亡細胞比例較小以及檢測樣品量很少(如活體組織切片)時,直接瓊脂糖電泳可能觀察不到核DNA的變化。CLONTECH公司的ApoAlert?LM-PCR Ladder Assay Kit通過LM-PCR(ligation-mediated PCR),連上特異性接頭,專一性地擴增核小體的梯度片段,從而靈敏地檢測凋亡時產生的核小體的梯度片段。此外,LM-PCR 檢測是半定量的,因此相同凋亡程度的不同樣品可進行比較。   上述兩種方法都針對細胞凋亡晚期核DNA斷裂這一特徵,但細胞受到其它損傷(如機械損傷,紫外線等)也會產生這一現象,因此它對細胞凋亡的檢測會受到其它原因的干擾。   
3) Telemerase Detection (端粒酶檢測)   

這是相對來說推出較早,用得較多的一種方法。端粒酶是由RNA和蛋白組成的核蛋白,它可以自身RNA為模板逆轉錄合成端粒區重複序列,使細胞獲得「永生化」。正常體細胞是沒有端粒酶活性的,每分裂一次,染色體的端粒會縮短,這可能作為有絲分裂的一種時鐘,表明細胞年齡、複製衰老或細胞凋亡的信號。研究發現,90%以上的癌細胞或凋亡細胞都具有端粒酶的活性。Intergen公司的TRAP-eze Telemerase Detection Kit在1996年率先推出。它提供特定的寡核苷酸底物,分別與底物及端粒重複序列配對的引物。如果待測樣本中含有端粒酶活性,就能在底物上接上不同個數的6鹼基(GGTTAG)端粒重複序列,通過PCR反應,產物電泳檢測就可觀察到相差六個鹼基的DNA Ladder現象(參見圖4)。此外,Intergen公司還提供用酶聯免疫法(ELISA)檢測的試劑盒.   同樣,這種檢測方法也不專對細胞凋亡,檢測結果也不純反應細胞凋亡的發生。

3.mRNA水平的檢測
  
研究者們發現了很多在細胞凋亡時表達異常的基因,檢測這些特異基因的表達水平也成為檢測細胞凋亡的一種常用方法。

據報道,Fas 蛋白結合受體后能誘導癌細胞中的細胞毒性T細胞(cytotoxic T cells)等靶細胞。Bcl-2 和bcl-X (長的) 作為抗凋亡(bcl-2 和bcl-X)的調節物,它們的表達水平比例決定了細胞是凋亡還是存活。一般多採用Northern雜交和RT-PCR走膠對它們進行檢測。

隨著近年來熒光定量PCR技術的發展,用定量PCR技術來檢測基因表達水平無疑比之前者更快更準確。Intergen公司的Amplifluor? Apoptosis Gene Systems就根據這一新技術原理,通過檢測fas, bax-alpha 和 bcl-X (長的) 基因的 mRNA表達水平來進行細胞凋亡的檢測。


引自鏈接:
http://baike.baidu.com/view/24139.htm





作者: huabin    時間: 2015-4-20 04:25


在該研究領域,湧現出不少容易混淆之概念!
例如:

一.程序性細胞死亡(PCD)包括細胞凋亡(apoptosis)、自噬性細胞死亡(autophagic cell death)、類凋亡(paraptosis)、有絲分裂災難(mitotic catastrophe)、脹亡(oncosis)、凋亡樣程序性細胞死亡(model of apoptosis-like)和壞死樣程序性細胞死亡(model of necrosis-like)等。

二.有人將"細胞凋亡"等同於"程序性細胞死亡";但更多的人認為:"程序性細胞死亡"包括:細胞凋亡(I型PCD)與細胞自噬(II型PCD)!

目前對"細胞凋亡",細胞自噬與細胞壞死三者,病理學界已經有了一些鑒別診斷之方法!

見下鏈接內容:http://news.dxy.cn/bbs/topic/18124558?tpg=1&age=0

三.細胞凋亡與細胞自噬之概念區別:

1.細胞凋亡是基因調控的主動過程,典型的細胞凋亡過程涉及一系列胱天蛋白酶(caspase)的水解、活化和信號傳遞過程。細胞凋亡一詞最早是由英國科爾等於1972年提出的。90年代才證明,細胞凋亡是基因調控的主動過程!

2.60年代即已發現細胞自噬"現象,它是指細胞內的溶酶體降解自身細胞器和其他大分子的過程。當細胞在缺乏營養或發生應激反應時,可發生細胞自噬現象。

D.QU
作者: huabin    時間: 2015-4-20 04:31
標題: 曲度與tangdl2000關於"細胞死亡通道"專題的對話之一



曲度與tangdl2000站友關於"細胞死亡通道"專題的對話之一:

鏈接如下:http://news.dxy.cn/bbs/topic/18108752?tpg=1&ppg=1&age=0#0

----------------------------------------------------------------

tangdl2000: 你好!

因在首頁看到liutcy網友發的"抗凋亡誘導抗腫瘤"這個貼子,就進來轉一轉!

故寫下了首個關於"細胞死亡通路悖論(Cell death pathway paradox)"與"細胞凋亡通路悖論(Apoptosis pathway paradox)"復貼!

我也初檢索過一下本站內有關"細胞凋亡"方面的內容,未見系統深入討論過!
考慮到DXY站內大多數是臨床醫師,對"細胞凋亡","細胞自噬",程序性細胞死亡"等概念恐怕聽得就不多,更不要說概念清楚!
故花了不少時間進行了中英文專題檢索!

我不同意你的一些看法:

1.因我未見你在DXY站內發過有關這方面比較系統的貼子(從基本概念,到各個概念鑒別)!

2.如不從基本概念開始,讀者中恐怕不會超過150人真看得懂此貼!何況開始幾貼多是英文的!也就不會有這麼多人跟讀此貼!

3.所貼上中英文檢索內容之貼(很多都是我親自譯過來的),也都標明了出處!我也初步看過,應該對站內大多數專業讀者有正面意義!既便有些概念有爭議,現在也是各有各說,也未見統一意見!或許孤陋寡聞,那能否請你能將這些"概念",逐一做一認真的並有內容的點評!以便我和大家學習!

4.你的水平如何,本人現在還不清楚!建議你將在這方面的研究成果能否貼出來,我和大家一定學習!

5.此外,要相信讀者們的判斷能力! DXY內藏龍卧虎,行家大有人在!多聽聽大家的看法,沒有壞處!我認為這本身就是一個學習過程!

DXY站是個開放網站!大家均可發言!

一點個人看法,僅供參考!謝謝!

D.QU
作者: huabin    時間: 2015-4-20 04:35
標題: 曲度與tangdl2000關於"細胞死亡通道"專題的對話之二


曲度與tangdl2000站友關於"細胞死亡通道"專題的對話之二:

鏈接如下:http://news.dxy.cn/bbs/topic/18108752?tpg=1&ppg=1&age=0#0
-------------------------------------------------------------------------

tangdl2000 wrote:
D.QU:
我那是不成熟的意見,僅供參考,別太當真。
細胞自噬DXY有一個專題,可以參考. 另外你那個帖子別重複發,否則討論不深入了:
http://cell.dxy.cn/bbs/topic/14167726

-------------------------------------------------------------------------

tangdl2000:

你提到的站內"細胞自噬"之貼,我原看過!討論的很不錯!

但有一個問題就是對"細胞死亡通道"各種方式,並未做匯總!更未做過全面比較!

故我放在"科技動態版"之生命科學欄目中的下貼:

細胞死亡通道(細胞凋亡,細胞自噬,細胞壞死與其他)全面比較!
http://news.dxy.cn/bbs/topic/18124558?tpg=1&age=0

就談不上是重複發貼!

也有必要做進一步深入探討!以便大家真正全面搞清楚這一領域的各種問題!

而這種深入探討,在本貼中討論顯然已不合適!

D.QU
作者: huabin    時間: 2015-4-20 04:38
標題: 曲度與tangdl2000關於"細胞死亡通道"專題的對話之三


曲度與tangdl2000站友關於"細胞死亡通道"專題的對話之三:

鏈接如下:http://news.dxy.cn/bbs/topic/18108752?ppg=2&age=0#0

--------------------------------------------------------------------------

tangdl2000 wrote:

......

不說別的,就說這個「自噬」,早期的研究包括哪些大牛們的綜述叫他「II型程序性死亡」,目前大牛們都改口了,並且在其綜述中加了限定詞,在某些特殊條件下引起死亡。為什麼這樣說了,因為基本上任何刺激都能誘發自噬和凋亡,只是門檻不一樣,以前看到自噬引起死亡實際上是混雜的凋亡引起的,當然體外實驗最終的結局都是死亡(類似毒性反應了)。因此更為科學的說自噬是一種應激反應,功能的是「程序性存活」。

......

--------------------------------------------------------------------------

D.QU回復:

那麼請教一下:

1.你認為「細胞自噬」到底屬不屬於「II型程序性死亡」?
2.你說的"目前大牛們都改口了,並且在其綜述中加了限定詞,在某些特殊條件下引起死亡。"這句話具體含意何在?是指在限定條件下,「細胞自噬」屬於「II型程序性死亡」?或否?有無國際權威性組織之結論?而不是某一大牛自說自話!
3.你不認為任何實驗都有一個邊界條件嗎?即你說的"門檻"?
4.你說,體外實驗最終的結局都是死亡,那麼在體內呢?你有沒有這方面的實驗研究結果?
5.以前看到自噬引起死亡實際上是混雜的凋亡引起的!你自己看到過嗎?在光鏡下還是電鏡下?
6.你說,更為科學的說自噬是一種應激反應,功能的是「程序性存活」。那麼,自噬所致的「程序性死亡」與其所致的「程序性存活」兩者之間,邊界條件何在?

還有很多問題容后再請教!

D.QU

作者: huabin    時間: 2015-4-20 04:39
標題: 曲度與tangdl2000關於"細胞死亡通道"專題的對話之三:


曲度與tangdl2000站友關於"細胞死亡通道"專題的對話之三:

鏈接如下:http://news.dxy.cn/bbs/topic/18108752?ppg=2&age=0#0

--------------------------------------------------------------------------

tangdl2000 wrote:

......

不說別的,就說這個「自噬」,早期的研究包括哪些大牛們的綜述叫他「II型程序性死亡」,目前大牛們都改口了,並且在其綜述中加了限定詞,在某些特殊條件下引起死亡。為什麼這樣說了,因為基本上任何刺激都能誘發自噬和凋亡,只是門檻不一樣,以前看到自噬引起死亡實際上是混雜的凋亡引起的,當然體外實驗最終的結局都是死亡(類似毒性反應了)。因此更為科學的說自噬是一種應激反應,功能的是「程序性存活」。

......

--------------------------------------------------------------------------

D.QU回復:

那麼請教一下:

1.你認為「細胞自噬」到底屬不屬於「II型程序性死亡」?
2.你說的"目前大牛們都改口了,並且在其綜述中加了限定詞,在某些特殊條件下引起死亡。"這句話具體含意何在?是指在限定條件下,「細胞自噬」屬於「II型程序性死亡」?或否?有無國際權威性組織之結論?而不是某一大牛自說自話!
3.你不認為任何實驗都有一個邊界條件嗎?即你說的"門檻"?
4.你說,體外實驗最終的結局都是死亡,那麼在體內呢?你有沒有這方面的實驗研究結果?
5.以前看到自噬引起死亡實際上是混雜的凋亡引起的!你自己看到過嗎?在光鏡下還是電鏡下?
6.你說,更為科學的說自噬是一種應激反應,功能的是「程序性存活」。那麼,自噬所致的「程序性死亡」與其所致的「程序性存活」兩者之間,邊界條件何在?

還有很多問題容后再請教!

D.QU

作者: huabin    時間: 2015-4-20 04:47
標題: 曲度與tangdl2000關於"細胞死亡通道"專題的對話之四


曲度與tangdl2000站友關於"細胞死亡通道"專題的對話之四:

鏈接如下:http://news.dxy.cn/bbs/topic/18108752?ppg=2&age=0#0

------------------------------------------------------------------------

tangdl2000 :

你好!首先感謝你的回貼!

同意你的下列看法:因為牽涉的都是概念性的東西,而概念性的東西是隨著研究進展,人們認識改變而變化的。

但在這世界上,從哲學上來說,任何時侯不存在絕對的真理!既便對大牛們的觀點,也應如此!

任何領域對某一個新概念做出定義之後,其他人如欲取消之,就應拿出十足的理由,並廣泛獲得同行共識!

壹.關於「細胞自噬」問題:

一.在你對「細胞自噬」到底屬不屬於「II型程序性死亡」?"之下面一段話回復中:

A.早期的文獻由於自噬概念比較新,因此僅檢查一下自噬的指標,例如電鏡,LC3的turnover以及spots formation.此時這些作者看到了兩個現象,自噬指標出現,而且細胞又死亡了,於是有些作者在概念上進行搶先定義,出現了II型程序性死亡。

B.此外大牛們自己的實驗室也開始做了,於是發現了其中的問題。但是他們又不好否定自己發表的高水平綜述,於是在概念上加了限定,在某些情形下自噬導致死亡,此外過多的自噬在細胞內堆積,達到一定程度后當然也會矯枉過正,出現紊亂和死亡。

二.你說"目前大牛們都改口了,並且在其綜述中加了限定詞,在某些特殊條件下引起死亡。"這句話具體含意何在?是指在限定條件下,「細胞自噬」屬於「II型程序性死亡」?或否?有無國際權威性組織之結論?而不是某一大牛自說自話!"之回復中:

你說:這些大牛2010年的綜述摘要中不會提及II型程序性死亡,只是在正文中稍加介紹。大牛之前的綜述在摘要中都可能說II型程序性死亡。

看完你關於這個問題的上述答覆,是不是可以得出下列結論:

1.即至今還沒有任何一個國際權威性組織,對「細胞自噬」屬於「II型程序性死亡」,做出明確的明文否定?因這些大牛2010年的綜述摘要中不會提及II型程序性死亡,只是在正文中稍加介紹.-->也就是說,但還是介紹了,並沒有被取消?

2.「細胞自噬」不屬於「II型程序性死亡」,到目前這只是你個人的看法!

貳.關於"量效和時效"

你不認為任何實驗都有一個邊界條件嗎?即你說的"門檻"?

--這個不好定義,門檻是相對定義的。通常是通過量效和時效實驗,來看這個反應,同時檢測細胞的數目。例如經典的營養缺乏導致自噬的模型,1個小時就誘導自噬了,這個時候沒有看見任何凋亡和壞死,然後慢慢的其他也出現了。

在我個人看來,"量效和時效實驗"仍脫不出傳統理論的束縛!因為它還是缺乏"以時間配合空間"的當代科學思想!有時間我會用自己的理論觀點,詳述這個與"細胞死亡通道"研究相關的問題!

叄.關於"光鏡下還是電鏡下"對"自噬或凋亡"之觀察問題:

以前看到自噬引起死亡實際上是混雜的凋亡引起的!你自己看到過嗎?在光鏡下還是電鏡下?
你的回答如下--當然看過。

那麼,就請容我再次請教如下:

您在何種實驗條件下,以及何種電鏡方式下,觀察過"自噬或凋亡"現象?您觀察過幾個器官或系統的的"細胞自噬或細胞凋亡"現象?您覺得那個器官的"細胞自嗜或凋亡"現象,最宜觀察和最先出現?您覺得各在多少倍的電鏡下,各個器官的"細胞自嗜或凋亡"表現最為清楚?

肆.關於"自噬程--序性死亡」與「自嗜程序性存活」兩者之間邊界條件!

在病歷("理",改一字)生理學的三大經典理論之一是損傷與抗損傷並存。當抗損傷耗竭的時候,或者矯枉過正的時候,另一面就出現了。自噬在本資(質,再改一字)上還是應激反應。

同意你的上述看法!

但對我的問題:自噬所致的「程--序性死亡」與其所致的「程序性存活」兩者之間,邊界條件何在?

答非所問!

伍.你的下列意見:此外本發言只限制在本貼,我個人不希望你黏貼到你的整理貼中,以恐以訛傳訛。

我不同意你的這一看法!其理由如下:

1.當代國際網際網路的普及,加之網上版權法之建立,遲早有一天取代雜誌報刊功能!
2.作為一個人的學術新觀點,一旦在網上公布,其價值一點不會低於國際權威雜誌!
3.只要這位發表自己觀點的作者,  不剽竊人家在網上"白紙黑字"寫就文字就可以!
4.尤其是對參與了某一專題討論的作者而言,就更沒有權力限制人家在自己發的貼子中"如實轉載"這一討論結果!有來有往這才公平!
5.以恐以訛傳訛,本人以為你過慮了!因在這個研究領域,本來就存在眾多問題,所以才會引起關注!
況且,凡系有生命力正確的東西就不怕爭鳴!而且越辯其概念越明!

愚孤陋寡聞,敬請指教!

一點意見,僅供參考!

D.QU
作者: huabin    時間: 2015-4-20 04:54
標題: 曲度與tangdl2000關於"細胞死亡通道"專題的對話之五


曲度與tangdl2000站友關於"細胞死亡通道"專題的對話之五:
鏈接如下:http://news.dxy.cn/bbs/topic/18108752?ppg=2&age=0#0

---------------------------------------------------------------
曲度編著:"細胞死亡通道"研究領域只揭"冰山一角"!仍處在"瞎子摸象"階段?

---------------------------------------------------------------

tangdl2000 wrote:

謝謝樓主的認真,你說的問題,我已回答不上來,十分抱歉。

希望其他戰友能幫找到答案,祝實驗順利。

個人還有一點愚見,這種專業的問題最好到這裡找答案:
http://www.ncbi.nlm.nih.gov/

-------------------------------------------------------------

tangdl2000 :你好!

1.說實話,看過你不少貼子,也知你對這個研究領域,確實有很深的理解!而我對之確真是個門外漢!但我的一位留學英國加拿大的親戚,卻是一個貨真價實的分子生物學專家!因與之經常討論相關問題,故對此略知一二.

2.同時,我在1980-1982年,因實驗研究"腹主動脈阻斷後與撤鉗后"問題,用當時國內最先進的日本電鏡,曾系統觀察過至少七個以上臟器(腦,肺,肝,腎,胰,腸與脊髓等)的病理變化;故對與其相關的"細胞凋亡"等問題就會敏感些!也會有一定程度的認識!

3.1980-1982年當時這方面的研究困難重重,連國內當時這方面公認的病理學電鏡權威應國華教授(河北新醫大),也只觀察過三個臟器(肝腎肺)!電鏡水平下觀察,自然就會涉及各種亞細胞器細微之結構變化!

4.當時我只好一切從找查外文資料和自己做電鏡觀察開始(因國內沒有先例;全國所有醫學院中連病理學老師當時都沒有看過上面我所提到的全部臟器的電鏡片,更沒有中文文獻,所以就沒有地方去學,只好一邊自學一邊觀察),做了幾百電鏡標本,花費了很多的時間,經篩過後手中集累了幾百張珍貴的電鏡照片!

爾後,數年中又因研究工作需要,幾乎觀察和收集齊了全身所有器官的電鏡標本,又集累了近千張電鏡照片!因此,到現在都可以毫不客氣的說,國內或許沒有誰所觀察過的器官電鏡標本比我多和廣!

5.上面問題是我故意試探你的水平和攻你之短處的;我也知你長處在其他方面,請你不要放在心上!

6.但有關"細胞死亡通道"的問題,我卻真的有與他人或許不同的看法:

A.至今它是一個人類認識領域的"黑洞",而且本人預計在至少100年內,不可能會有根本性的突破!

B.原因在於:"細胞"本身就相當與一個"小宇宙"! 人類研究"細胞"其困難程度一點都不會小於研究"宇宙"!您說困難不?

C.研究"細胞死亡通道"問題,就好似研究臨床機體整體層次的"多臟器衰竭死亡"問題一樣困難!
如果后一個問題那麼容易攻克,臨床還會死人嗎!您說有可能嗎?前者也同此理!只是層次不同!

D.現在這個研究領域的國際大牛們只是處在"瞎子摸象"階段,但卻大多自我淘醉不醒而已!你和大家都不要迷信!應獨辟它途!

E.該領域目前所揭示的一些現象只是"冰山一角"!遠沒有達到可以歸納成一個完整系統理論之程度!

F,如果對之研究換一種指導思想,或許就有可能闖出一條全新的寬廣道路!
鏈接:http://www.dxy.cn/bbs/topic/17861508?tpg=1&age=0

最後你所提到的下面一點:

個人還有一點愚見,這種專業的問題最好到這裡找答案:
http://www.ncbi.nlm.nih.gov/

本人認為關於這個領域的很多問題,在該網站中是找不到答案的!因該整個領域研究的指導思想還停留在原處!並未出現新東西!

純屬個人看法,僅供參考!

同時感謝你的直率和坦言!

D.QU
作者: huabin    時間: 2015-4-20 04:56


最近有關"細胞死亡"的專業討論,在DXY園站內很熱鬧!在這一個領域研究中似乎發生了一些天翻地復的大事,但靜下心來認真深入思考,實際上在這個研究領域的很多基本概念,人們尚待澄清!

該領域近10幾年來,不斷發現有人提出一些反傳統現象:一方面說明這一領域引起了人們廣泛重視和有了一些新的進展;另一方面這意味著這一研究領域仍很年青以及尚有很多問題有待研究!

然而,該研究領域中很多基本概念定義較混亂,這也是一個不爭的事實!唯有理順該領域的基本概念之後,人們方有可能建立起一個經得起邏輯推敲的牢固的理論體系,並在此基礎之上向前挺進!

D.QU
作者: huabin    時間: 2015-4-20 04:59
標題: 細胞自噬--歷史與進展(專題文獻彙集-1997-2010)
本帖最後由 huabin 於 2015-4-20 07:42 編輯



注:下面這一組文章,很多是該領域經典之作或工具書,故時過幾年仍有重要參考價值,故附上.


細胞自噬--歷史與進展(專題文獻彙集--1997-2010)

這是tangdl2000醫師為DXY生命科學專業網站所做的該專題文獻檢索工作!

我初步統計了一下:

2010年11篇;---->全部譯出!
2009年 2篇;---->已經譯出!
2008年 3篇;---->已譯譯出!
2007年 4篇;---->已譯譯出!
2005年 1篇;---->已經譯出!
2000年 1篇;---->已經譯出!
1998年 1篇;---->已經譯出!
1997年 1篇;---->已經譯出!

合計: 24篇!

本人決定一周內,將上面所有英文摘要全部譯出!

現將譯文全部貼在後面,以饗DXY站內廣大讀者!

D.QU


作者: huabin    時間: 2015-4-20 05:01
標題: 曲 度譯:細胞自噬能延長壽命嗎?
2010年第一篇:

曲 度譯:細胞自噬能延長壽命嗎?

Madeo F, Tavernarakis N, Kroemer G:Can autophagy promote longevity,Nat Cell Biol. 2010 Sep;12(9):842-6.

Frank Madeo is in the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.

Abstract
Organismal lifespan can be extended by genetic manipulation of cellular processes such as histone acetylation, the insulin/IGF-1 (insulin-like growth factor 1) pathway or the p53 system. Longevity-promoting regimens, including caloric restriction and inhibition of TOR with rapamycin, resveratrol or the natural polyamine spermidine, have been associated with autophagy (a cytoprotective self-digestive process) and in some cases were reported to require autophagy for their effects. We summarize recent developments that outline these links and hypothesize that clearing cellular damage by autophagy is a common denominator of many lifespan-extending manipulations.

摘要
通過基因操縱細胞進程,例如組蛋白乙醯化作用,胰島素樣生長因子1(insulin/IGF-1)通路,或者p53系統,可以延長生物機體的壽命 。

促進長壽方法,包括熱量限制,用雷帕黴素(rapamycin),白藜蘆醇(resveratrol)或自然多胺精胺(polyamine spermidine)抑制TOR之作用,已被認為與細胞自噬(一種細胞保護自我消化過程)相關;此外,在某些情況下,據報告認為需要這種細胞自噬對它們之作用。

我們總結了最近的事態發展及這些聯繫之綱要,並假設通過細胞自噬清除細胞損傷(的方法),是延長壽命操控之許多(方法)的共同之處。

PMID: 20811357 [PubMed - in process]


tangdl2000選文2010-09-04 12:01
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:03
標題: 曲 度譯:選擇性自噬:泛素介導的認同及其超越
2010年第二篇:

曲 度譯:選擇性自噬:泛素介導的認同及其超越

Kraft C, Peter M, Hofmann K:Selective autophagy: ubiquitin-mediated recognition and beyond,Nat Cell Biol. 2010 Sep;12(9):836-41.
文章標題:選擇性自噬:泛素介導的認同及其超越.

Claudine Kraft and Matthias Peter are in the Institute of Biochemistry, ETH Zürich, Schafmattstrasse 18, CH-8093 Zürich, Switzerland. matthias.peter@bc.biol.ethz.ch.

Abstract
Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Whereas the ubiquitin-proteasome system is involved in the rapid degradation of proteins, autophagy pathways can selectively remove protein aggregates and damaged or excess organelles. Proteasome-mediated degradation requires previous ubiquitylation of the cargo, which is then recognized by ubiquitin receptors directing it to 26S proteasomes. Although autophagy has long been viewed as a random cytoplasmic degradation system, the involvement of ubiquitin as a specificity factor for selective autophagy is rapidly emerging. Recent evidence also suggests active crosstalk between proteasome-mediated degradation and selective autophagy. Here, we discuss the molecular mechanisms that link autophagy and the proteasome system, as well as the emerging roles of ubiquitin and ubiquitin-binding proteins in selective autophagy. On the basis of the evolutionary history of autophagic ubiquitin receptors, we propose a common origin for metazoan ubiquitin-dependent autophagy and the cytoplasm-to-vacuole targeting pathway of yeast.

摘要:
真核細胞使用自噬和泛素蛋白酶體系統,作為它們主要的蛋白質降解通道。儘管在蛋白質快速降解過程中涉及泛素蛋白酶體系統,但是細胞自噬通道能選擇地消除惡化和損壞的蛋白質以及過剩的細胞器。蛋白酶體介導的降解作用需要這種物質的先前泛素化作用,然後才認可通過泛素受體引導它至26S蛋白酶體。

雖然,細胞自噬長期以來被視作為一種隨機的細胞質降解體系,但是泛素的參與作用作為一種選擇性細胞自噬的特異性因子的觀點,正在迅速崛起。最近的研究證據也表明:在蛋白酶體介導降解作用與選擇性細胞自噬之間,存在一種活躍的對話。

在本文中,我們討論了那些與細胞自噬以及蛋白酶體系統相關聯的分子機制,並討論了在選擇性自噬作用中,泛素與泛素結合蛋白的新興作用。在自噬泛素受體的進化歷史基礎上,我們提出了一個針對後生動物的泛素依賴細胞自噬之共同起源(學說),和酵母以細胞質-空泡為標靶通道之說。

PMID: 20811356 [PubMed - in process]

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:13
標題: 曲 度譯:吃就不死:巨自噬之歷史


2010年第五篇:

曲 度譯:吃就不死:巨自噬之歷史

Yang Z, Klionsky DJ.:Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010 Sep;12(9):814-22.

the Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA, the Department of Molecular, Cellular and Developmental Biology, 830 North University Avenue, Natural Science Building (Kraus) Ann Arbor, MI 48109-1048, USA and the Department of Biological Chemistry 1150 West Medical Center Drive, Ann Arbor, MI 48109-5606, USA.

Abstract
Macroautophagy (hereafter autophagy), or 'self-eating', is a conserved cellular pathway that controls protein and organelle degradation, and has essential roles in survival, development and homeostasis. Autophagy is also integral to human health and is involved in physiology, development, lifespan and a wide range of diseases, including cancer, neurodegeneration and microbial infection. Although research on this topic began in the late 1950s, substantial progress in the molecular study of autophagy has taken place during only the past 15 years. This review traces the key findings that led to our current molecular understanding of this complex process.

摘要:

巨自嗜「Macroautophagy」(以下簡稱自噬),或「自食」,是一種保留的細胞通道,其控制蛋白質和細胞器的降解,並在(生物機體)的生存,發展和動態平衡中起著一種基本的作用。

自噬對人類健康也是不可缺的,其涉及生理學,發育,壽命和多種疾病,包括癌症,細胞神經退行性變和微生物感染等。雖然這一科題研究始於20世紀50年代後期,但在過去15年中,細胞自噬的分子學研究方面取得重大進展。

這篇文獻綜述追索了那些關鍵的發現,後者導致我們目前對這一複雜過程的分子(生物學)觀點。

PMID: 20811353 [PubMed - in process]

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:15
標題: 曲 度譯:在哺乳動物中細胞自噬的一些研究方法

2010年第十篇:

曲 度譯:在哺乳動物中細胞自噬的一些研究方法

Mizushima N, Yoshimori T, Levine B.:Methods in mammalian autophagy research. Cell. 2010 Feb 5;140(3):313-26.

Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan. nmizu.phy2@***.ac.jp

Abstract
Autophagy has been implicated in many physiological and pathological processes. Accordingly, there is a growing scientific need to accurately identify, quantify, and manipulate the process of autophagy. However, as autophagy involves dynamic and complicated processes, it is often analyzed incorrectly. In this Primer, we discuss methods to monitor autophagy and to modulate autophagic activity, with a primary focus on mammalian macroautophagy.

摘要:

自噬業已牽連許多生理和病理過程。因此,人們越來越需要科學性地準確識別,量化和操控的自噬的過程。然而,由於自噬涉及動態的複雜的過程,因此它在分析中往往處於不正確的狀態之中。

在這種背景下,我們討論那些監測細胞自噬和調節自嗜活性的方法,重點針對對哺乳動物的巨自噬「macroautophagy」作用。

PMID: 20144757

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:18
標題: 曲度譯:自噬作為一種細胞降解作用的調控途徑


2000年第1篇:

曲度譯:自噬作為一種細胞降解作用的調控途徑

Klionsky DJ, Emr SD.:Autophagy as a regulated pathway of cellular degradation.
,Science. 2000 Dec 1;290(5497):1717-21.

Department of Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA. klionsky@umich.edu

Abstract
Macroautophagy is a dynamic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to the lysosome or vacuole where the sequestered cargo is degraded and recycled. This process takes place in all eukaryotic cells.
It is highly regulated through the action of various kinases, phosphatases, and guanosine triphosphatases (GTPases). The core protein machinery that is necessary to drive formation and consumption of intermediates in the macroautophagy pathway includes a ubiquitin-like protein conjugation system and a protein complex that directs membrane docking and fusion at the lysosome or vacuole. Macroautophagy plays an important role in developmental processes, human disease, and cellular response to nutrient deprivation.

摘要:

巨自嗜「Macroautophagy」是一個動態的過程,其涉及到細胞內的膜之重新排列,以便隔離細胞質和細胞器,並輸送到溶酶體或液泡中去;在那裡,那些被隔離的物質被降解和再生。在所有的真核細胞中會發生這一過程。

通過各種激酶,磷酸酶與鳥苷三磷酸酶「guanosi triphosphatases」(GTP酶)的作用,這一過程被高度調控。

在巨自嗜「macroautophagy」途徑中,需要核蛋白機械性地參與,以便驅動中介物的形成和消耗;其包括一種泛素樣蛋白共軛體系和一種蛋白複合物,後者指導在溶酶體或空泡中的膜對接和融合。 巨自噬「Macroautophagy」在發育過程,人類疾病以及細胞對養分剝奪反應中起著一種重要的作用。

PMID: 11099404 [PubMed - indexed for MEDLINE]

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:19
標題: 曲 度譯:解開在炎症和免疫之中的細胞死亡信號之密碼

2010年第七篇:

曲 度譯:解開在炎症和免疫之中的細胞死亡信號之密碼

Zitvogel L, Kepp O, Kroemer G.:Decoding cell death signals in inflammation and immunity,Cell. 2010 Mar 19;140 :798-804.

INSERM, Villejuif, France. zitvogel@igr.fr

Abstract
Dying cells release and expose at their surface molecules that signal to the immune system. We speculate that combinations of these molecules determine the route by which dying cells are engulfed and the nature of the immune response that their death elicits.

摘要:
垂死的細胞釋放和暴露出它們的表面分子,後者給免疫系統發出信號。我們推測這些分子的組合作用,決定了垂死細胞被吞噬以及免疫反應性質的途徑,並引導它們走向死亡。

PMID: 20303871


tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:20
標題: 曲 度譯:解開在炎症和免疫之中的細胞死亡信號之密碼

2010年第七篇:

曲 度譯:解開在炎症和免疫之中的細胞死亡信號之密碼

Zitvogel L, Kepp O, Kroemer G.:Decoding cell death signals in inflammation and immunity,Cell. 2010 Mar 19;140 :798-804.

INSERM, Villejuif, France. zitvogel@igr.fr

Abstract
Dying cells release and expose at their surface molecules that signal to the immune system. We speculate that combinations of these molecules determine the route by which dying cells are engulfed and the nature of the immune response that their death elicits.

摘要:
垂死的細胞釋放和暴露出它們的表面分子,後者給免疫系統發出信號。我們推測這些分子的組合作用,決定了垂死細胞被吞噬以及免疫反應性質的途徑,並引導它們走向死亡。

PMID: 20303871


tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:33
標題: 曲 度譯:自噬體膜的起源

2010年第三篇:

曲 度譯:自噬體膜的起源

Tooze SA, Yoshimori :The origin of the autophagosomal membrane. Nat Cell Biol. 2010 Sep;12(9):831-5.

Sharon A. Tooze is in the Secretory Pathways Laboratory, London Research Institute Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, U.K. sharon.tooze@cancer.org.uk.

Abstract
Macroautophagy is initiated by the formation of the phagophore (also called the isolation membrane). This membrane can both selectively and non-selectively engulf cytosolic components, grow and close around the sequestered components and then deliver them to a degradative organelle, the lysosome. Where this membrane comes from and how it grows is not well understood. Since the discovery of autophagy in the 1950s the source of the membrane has been investigated, debated and re-investigated, with the consensus view oscillating between a de novo assembly mechanism or formation from the membranes of the endoplasmic reticulum (ER) or the Golgi. In recent months, new information has emerged that both the ER and mitochondria may provide a membrane source, enlightening some older findings and revealing how complex the initiation of autophagy may be in mammalian cells.

------------------------------------------

英譯中摘要:

通過phagophore形成方式,啟動巨自嗜「Macroautophagy」,也稱為膜隔離。這種膜可以選擇性地和非選擇性地吞噬細胞質組成部分,生長並緊密地圍繞隔離成分,然後輸送它們到一種降解細胞器中去,後者即為溶酶體。

這種膜來自何處,已及它如何生長仍沒有充分的了解。自從20世紀50年代發現自噬現象以來,對這種膜的來源進行了研究,辯論和重新探索,大家的共識為從新組裝機制或者源自內質網(ER)或高爾基體之膜形成作用。

近幾個月來,所出現了新的信息,即內質網(ER)和線粒體可能提供了膜的來源,它啟示了某些舊的發現,並揭示在哺乳動物細胞中可能存在異常複雜的細胞自噬之啟動活動。

註:phagophore一詞不知如何中譯,敬請指教!

PMID: 20811355 [PubMed - in process]

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。5- 22:30)
作者: huabin    時間: 2015-4-20 05:35
標題: 曲 度譯:哺乳動物發育和分化中的自嗜現象


2010年第四篇:

曲 度譯:哺乳動物發育和分化中的自嗜現象

Mizushima N, Levine B.:Autophagy in mammalian development and differentiation;Nat Cell Biol. 2010 Sep;12(9):823-30.

Noboru Mizushima is in the Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.

Abstract
It has been known for many decades that autophagy, a conserved lysosomal degradation pathway, is highly active during differentiation and development. However, until the discovery of the autophagy-related (ATG) genes in the 1990s, the functional significance of this activity was unknown. Initially, genetic knockout studies of ATG genes in lower eukaryotes revealed an essential role for the autophagy pathway in differentiation and development. In recent years, the analyses of systemic and tissue-specific knockout models of ATG genes in mice has led to an explosion of knowledge about the functions of autophagy in mammalian development and differentiation. Here we review the main advances in our understanding of these functions.

-------------------------------------------

英譯中摘要:

人們對細胞自噬的認識已經有幾十年之久,它在分化和發育過程中是一種保留的溶酶體降解途徑並非常活躍。

然而,直到20世紀90年代發現自噬相關基因(ATG),這種活動的功能性意義尚不明確。

最初,在較低等的真核生物的ATG基因之基因剔除研究中,發現在分化和發育過程中的一種細胞自噬途徑。

近幾年來,某些系統性分析以及在小鼠ATG基因的組織特異性基因敲除模型,已經導致了一種在哺乳動物發育和分化中細胞自噬功能方面的知識爆炸。本文中,我們回顧了我們所了解的這些功能之主要進展。

PMID: 20811354 [PubMed - in process]


tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。5- 22:30)
作者: huabin    時間: 2015-4-20 05:36
標題: 高等真核生物細胞中監測自噬試驗之解釋與使用指南

2010年第六篇:

高等真核生物細胞中監測自噬試驗之解釋與使用指南

Klionsky DJ, Abeliovich H, Agostinis P,ET AL:Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes.Autophagy. 2008 Feb 16;4(2):151-75. Epub 2007 Nov 21.

Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA. klionsky@umich.edu

Comment in:

Autophagy. 2008 Feb 16;4(2):139-40.

Abstract
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.

------------------------------------------

摘要:

摘要

有關細胞自噬之研究持續性地增加(1),其結果是許多新的科學家正在進入這一領域。因此,在不同的生物機體中建立一套標準的監測巨自噬「macroautophagy」的準則規定,就具有重要意義。

最近的很多文獻複習業已描述已被使用於這一目的之檢測範圍。(2,3)

有許多有用的和方便的方法可用於監測酵母巨自嗜「macroautophagy」,但在其他模型系統中相對較少;此外,用於測試高等真核生物的巨自嗜「macroautophagy」,存在很多混淆的但看似可接受的方法。

需要強調的一個關鍵問題在於:在測量監測的自噬體數目與測量那些流過自噬途徑的自噬體數目之間,存在一種差異;這樣一來,巨自噬「macroautophagy」堆積,將導致自噬體「autophagosome」的聚集作用,需要從完全功能性自嗜的分化作用,其涉及輸送和降解,以及溶酶體(在大多數高等真核生物中)或液泡(植物和真菌液泡)。

本文中,我們提出一套指南,用於對這些方法的選擇和解釋;那些試圖檢測巨自嗜「macroautophagy」及其相關進程的研究人員可以使用之,此外,那些需要對這些研究過程的文章提供實際與合理的批評意見的審稿者可以使用之。

本套指南並不意味著是一種公式化的規則,因為適當檢測部分地取決於那些所需求的問題和正在使用的系統。此外,我們強調,沒有任何的檢測能保證在各種情況下都是最恰當的,我們強烈推薦使用多種檢測來驗證一種自噬反應。

PMID: 18188003 [PubMed - indexed for MEDLINE]

HUABIN 初譯稿

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:39
標題: 曲 度譯:對癌症而言的線粒體關卡

2010年第八篇:

曲 度譯:對癌症而言的線粒體關卡.

Galluzzi L, Morselli E, Kepp O, ET AL:Mitochondrial gateways to cancer
,Mol Aspects Med. 2010 Feb;31(1):1-20. Epub 2009 Aug 19.

INSERM, U848, Institut Gustave Roussy, PR1, 39 Rue Camille Desmoulins, F-94805 Villejuif, France.

Abstract
Mitochondria are required for cellular survival, yet can also orchestrate cell death. The peculiar biochemical properties of these organelles, which are intimately linked to their compartmentalized ultrastructure, provide an optimal microenvironment for multiple biosynthetic and bioenergetic pathways. Most intracellular ATP is generated by mitochondrial respiration, which also represents the most relevant source of intracellular reactive oxygen species. Mitochondria participate in a plethora of anabolic pathways, including cholesterol, cardiolipin, heme and nucleotide biosynthesis. Moreover, mitochondria integrate numerous pro-survival and pro-death signals, thereby exerting a decisive control over several biochemical cascades leading to cell death, in particular the intrinsic pathway of apoptosis. Therefore, it is not surprising that cancer cells often manifest the deregulation of one or several mitochondrial functions. The six classical hallmarks of cancer (i.e., limitless replication, self-provision of proliferative stimuli, insensitivity to antiproliferative signals, disabled apoptosis, sustained angiogenesis, invasiveness/metastatic potential), as well as other common features of tumors (i.e., avoidance of the immune response, enhanced anabolic metabolism, disabled autophagy) may directly or indirectly implicate deregulated mitochondria. In this review, we discuss several mechanisms by which mitochondria can contribute to malignant transformation and tumor progression.

-----------------------------------------

摘要:

線粒體對於細胞生存來說是必需的,但其也可以編排細胞死亡。這些細胞器奇特的生物化學特性是,其與隔離的超微結構是密切相連的,從而為多種生物合成和生物能量的途徑提供了一個最佳的微環境。

通過線粒體呼吸方式產生大部分細胞內的ATP,其也是細胞內活性氧類之最主要來源。線粒體參與了眾多的合成代謝途徑,其中包括膽固醇,心磷脂,血紅素和核苷酸生化合成。

此外,線粒體整合了許多的前-生存信號「pro-survival signals」和前-死亡信號「pro-death signals」,從而對一些生化級聯發揮了一種決定性的控制作用,導致細胞死亡,特別是內在的細胞凋亡途徑。因此,這一點也不奇怪,癌細胞往往體現了一種或幾種線粒體功能的管制放鬆。

癌症的經典的六個特點(即無限複製,增生性刺激的自我提供,對抗增殖信號的失敏感,凋亡失功,持續性血管生成,侵襲/轉移潛能),以及其他常見的腫瘤特徵(即逃避免疫反應,蛋白質同化代謝增強,自噬失功),均可能會直接或間接地牽涉線粒體之開放。在這篇綜述中,我們討論了一些機制,通過這些機制線粒體有助於惡性轉化和腫瘤的發展。

PMID: 19698742

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:41
標題: 曲度譯:p53對細胞自噬的調節作用

2010年第九篇:

曲度譯:p53對細胞自噬的調節作用

Maiuri MC, Galluzzi L, Morselli E,ET AL:Autophagy regulation by p53
,Curr Opin Cell Biol. 2010 Apr;22(2):181-5. Epub 2010 Jan 13.

INSERM, U848, F-94805 Villejuif, France.

Abstract
Autophagy is an evolutionarily conserved catabolic pathway that is involved in numerous physiological processes and in multiple pathological conditions including cancer. Autophagy is regulated by an intricate network of signaling cascades that have not yet been entirely disentangled. Accumulating evidence indicates that p53, the best-characterized human tumor suppressor protein, can modulate autophagy in a dual fashion, depending on its subcellular localization. On the one hand, p53 functions as a nuclear transcription factor and transactivates proapoptotic, cell cycle-arresting and proautophagic genes. On the other hand, cytoplasmic p53 can operate at mitochondria to promote cell death and can repress autophagy via poorly characterized mechanisms. This review focuses on the recently discovered function of p53 as a master regulator of autophagy.

-----------------------------------------

摘要:

細胞自噬是一種進化上保守的代謝途徑,其涉及許多的生理過程和包括癌症在內的多種病理狀態。

通過一種尚未完全了解的級聯信號的複雜網路,可以調節自噬。

越來越多的證據表明:最佳特性的人類腫瘤抑制蛋白「p53」,可以雙重方式調控細胞自噬,其取決於它在亞細胞之定位。

一方面,p53的功能作用,起著一種核轉錄因子和經活化促凋亡「transactivates proapoptotic」,遏制細胞周期和促凋亡proautophagic基因之作用。

另一方面,細胞質p53能在線粒體操控,以便促進細胞死亡,並能通過不好特點的機制抑制細胞自噬。

這篇綜述重點討論,p53作為一種自噬的主要調控子,在最近所發現的功能。

PMID: 20044243


tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30) 曲度譯:p53對細胞自噬的調節作用
作者: huabin    時間: 2015-4-20 05:43
標題: 曲 度譯:Beclin 1相互作用群

2010年第十一篇:

曲 度譯:Beclin 1相互作用群

He C, Levine B.:The Beclin 1 interactome.Curr Opin Cell Biol. 2010 Apr;22(2):140-9. Epub 2010 Jan 22.

Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.

Abstract
The mammalian ortholog of yeast Atg6/Vps30, Beclin 1, is an essential autophagy protein that has been linked to diverse biological processes, including immunity, development, tumor suppression, lifespan extension, and protection against certain cardiac and neurodegenerative diseases. In recent years, major advances have been made in identifying components of functionally distinct Beclin 1/class III phosphatidylinositol 3-kinase complexes, in characterizing the molecular regulation of interactions between Beclin 1 and the autophagy inhibitors, Bcl-2/BcL-X(L), and in uncovering a role for viral antagonists of Beclin 1 in viral pathogenesis. The rapidly growing list of components of the 'Beclin 1 interactome' supports a model in which autophagy, and potentially other membrane trafficking functions of Beclin 1, are governed by differential interactions with different binding partners in different physiological or pathophysiological contexts.

------------------------------------------

摘要
哺乳動物同源的酵母Atg6/Vps30(Beclin 1),是一個重要的自噬蛋白。其與不同的生物過程相關,例如:包括免疫,發育,腫瘤抑制,壽命延長,以及對某些心臟和神經退行性疾病的保護。

近年來,在鑒定功能獨特的Beclin 1/class 三磷酸肌醇3-激酶複合物之成份方面,在Beclin 1與自噬抑制子「Bcl-2/BcL-X(L)」相互作用之分子調節特徵方面,在揭示病毒發病機制中Beclin 1作為病毒拮抗劑之作用方面,均取得了重大進展。

Beclin 1相互作用群成份之迅速發展的名單支持下列一種作用模式:在該模式中,自噬與潛在的其他膜的輸送Beclin 1之功能,是在不同的生理或病理生理情況下,通過不同的結合夥伴方式下不同的相互作用來完成之。

PMID: 20097051

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)

作者: huabin    時間: 2015-4-20 05:46
標題: 曲度譯:Apg1p在釀酒酵母自噬過程所需的一新的蛋白激酶

1997年第1篇:

曲 度譯:Apg1p:在釀酒酵母自噬過程中所需的一種新的蛋白激酶
Matsuura A, Tsukada M, Wada Y,ET AL:Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae.Gene. 1997 Jun 19;192(2):245-50

Department of Biology, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Japan.

Abstract

Autophagic protein degradation includes bulk protein turnover with dynamic membrane reorganization, in which formation of novel organelles autophagosomes play key roles.

We have shown that Saccharomyces cerevisiae performs the autophagy in the vacuole, a lytic compartment of yeast, in response to various kinds of nutrient starvation.

Here we show that the APG1 gene, involved in the autophagic process in yeast, encodes a novel type of Ser/Thr protein kinase.

Our results provide direct evidence for involvement of protein phosphorylation in regulation of the autophagic process.

We found overall homology of Apglp with C. elegans Unc-51 protein, suggesting that homologous molecular mechanisms, conserved from unicellular to multicellular organisms, are involved in dynamic membrane flow.

--------------------------------------------

摘要:

細胞自噬蛋白質的降解作用涉及散在的蛋白質轉變成動態膜的重組作用;

在該作用中,新型細胞器自噬體的形成起著一種關鍵作用。

我們已經顯示,釀酒酵母形成液泡中的自嗜現象,與一種酵母裂解成分對各種營養缺乏狀態之反應相關。

在本文中,我們顯示APG1基因,在酵母自噬過程中,參與了一種新的類型的絲氨酸/蘇氨酸蛋白激酶(Ser/Thr protein kinase)的編碼。

我們的結果提供了在調控自噬過程中蛋白質磷酸化參與的直接證據。

我們發現了帶有UNC - 51蛋白之線蟲的整體同源性的,這就表明在動態膜流動中同源分子機制(有從單細胞到多細胞生物機體)都被涉及其中。

PMID: 9224897


tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:49
標題: 曲度譯:beclin一新的Bcl-2相互作用蛋白能保護Sindbis病毒性腦炎
1998年第1篇:

曲 度譯:beclin,一種新的Bcl-2相互作用蛋白能拮抗性保護致命性的Sindbis病毒性腦炎

Liang XH, Kleeman LK, Jiang HH,ET ALrotection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein.J Virol. 1998 Nov;72(11):8586-96.

Departments of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.

Abstract

bcl-2, the prototypic cellular antiapoptotic gene, decreases Sindbis virus replication and Sindbis virus-induced apoptosis in mouse brains, resulting in protection against lethal encephalitis.

To investigate potential mechanisms by which Bcl-2 protects against central nervous system Sindbis virus infection, we performed a yeast two-hybrid screen to identify Bcl-2-interacting gene products in an adult mouse brain library.

We identified a novel 60-kDa coiled-coil protein, Beclin, which we confirmed interacts with Bcl-2 in mammalian cells, using fluorescence resonance energy transfer microscopy.

To examine the role of Beclin in Sindbis virus pathogenesis, we constructed recombinant Sindbis virus chimeras that express full-length human Beclin (SIN/beclin), Beclin lacking the putative Bcl-2-binding domain (SIN/beclinDeltaBcl-2BD), or Beclin containing a premature stop codon near the 5' terminus (SIN/beclinstop).

The survival of mice infected with SIN/beclin was significantly higher (71%) than the survival of mice infected with SIN/beclinDeltaBcl-2BD (9%) or SIN/beclinstop (7%) (P < 0.001).

The brains of mice infected with SIN/beclin had fewer Sindbis virus RNA-positive cells, fewer apoptotic cells, and lower viral titers than the brains of mice infected with SIN/beclinDeltaBcl-2BD or SIN/beclinstop.

These findings demonstrate that Beclin is a novel Bcl-2-interacting cellular protein that may play a role in antiviral host defense.

-------------------------------------------

摘要:

bcl - 2基因,這種典型細胞抗凋亡基因能減少在小鼠大腦中Sindbis病毒的複製和Sindbis病毒誘導的細胞凋亡,從而能夠拮抗性地保護致命性的腦炎。

為了探討Bcl – 2拮抗性保護中樞神經系統Sindbis病毒感染的潛在機制,我們進行了一種酵母雙雜交屏幕,以便鑒定在成年小鼠大腦庫中的Bcl - 2的相互作用基因的產物。

我們鑒定了一種新的60 - kDa的螺旋線圈蛋白質「Beclin」,我們通過採用熒光共振能量轉移顯微技術,證實其與哺乳動物細胞的相互作用。

為了探討Beclin在Sindbis病毒發病機制中的Beclin作用,我們構建和重組了Sindbis病毒嵌合體;其表達為全長人類Beclin(SIN/ beclin),缺乏推測Bcl - 2的結合域(SIN/beclin Delta Bcl-2BD)之Beclin,或含有鄰近5'端(SIN/ beclinstop)提前終止密碼子之Beclin 。

感染SIN/ beclin小鼠的存活率(71%)顯著高於感染SIN/beclinDeltaBcl-2BD(9%); 或感染SIN/ beclinstop(7%),P <0.001。

感染SIN/ beclin小鼠的大腦存在較少的Sindbis病毒RNA陽性細胞,較少的凋亡細胞,

與感染SIN/beclinDeltaBcl-2BD或者SIN/ beclinstop的小鼠相比較,其大腦中Sindbis病毒的滴度較低。

這些結果表明:Beclin是一種新型的Bcl - 2相互作用的細胞蛋白,其可能參與了一種宿主抗病毒宿主之作用。

PMID: 9765397

tangdl2000選文2010-09-04 12:04
HUABIN 翻譯初稿 (2010。9。4 22:30)
作者: huabin    時間: 2015-4-20 05:52
標題: 曲 度譯:細胞死亡中的自噬:一個無辜的犯人?


2005年第1篇:

Levine B, Yuan J.:Autophagy in cell death: an innocent convict? J Clin Invest. 2005 Oct;115(10):2679-88.

曲 度譯:細胞死亡中的自噬:一個無辜的犯人?

Division of Infectious Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA. beth.levin@utsouthwestern.edu

Erratum in:

J Clin Invest. 2006 Dec;116(12):3293.

----------------------------------------------------------------------------

Abstract

The visualization of autophagosomes in dying cells has led to the belief that autophagy is a nonapoptotic form of programmed cell death.

This concept has now been evaluated using cells and organisms deficient in autophagy genes.

Most evidence indicates that, at least in cells with intact apoptotic machinery, autophagy is primarily a pro-survival rather than a pro-death mechanism.

This review summarizes the evidence linking autophagy to cell survival and cell death, the complex interplay between autophagy and apoptosis pathways, and the role of autophagy-dependent survival and death pathways in clinical diseases.

---------------------------------------------------

整理之後:

摘要

垂死細胞中的自噬體可視化作用導致了對細胞自噬如下一種信念:即它是一種程序性細胞死亡的非凋亡「nonapoptotic」形式。

現在這個觀念已被使用在細胞和生物機體的自噬基因缺陷之評估當中。

多數證據表明:至少在完整凋亡機制的細胞之中,自噬作用主要是一種促-生存,而不是一種促-死亡的機制。

本文總結了那些細胞自噬與細胞生存以及細胞死亡相關的證據,細胞自噬與細胞凋亡的途徑之間的複雜相互作用,以及在臨床疾病中自噬依賴性生存和自噬依賴性死亡通道之作用。

HUABIN 初譯稿
作者: huabin    時間: 2015-4-20 05:53
標題: 曲 度譯:細胞死亡中的自噬:一個無辜的犯人?


2005年第1篇:

Levine B, Yuan J.:Autophagy in cell death: an innocent convict? J Clin Invest. 2005 Oct;115(10):2679-88.

曲 度譯:細胞死亡中的自噬:一個無辜的犯人?

Division of Infectious Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9113, USA. beth.levin@utsouthwestern.edu

Erratum in:

J Clin Invest. 2006 Dec;116(12):3293.

----------------------------------------------------------------------------

Abstract

The visualization of autophagosomes in dying cells has led to the belief that autophagy is a nonapoptotic form of programmed cell death.

This concept has now been evaluated using cells and organisms deficient in autophagy genes.

Most evidence indicates that, at least in cells with intact apoptotic machinery, autophagy is primarily a pro-survival rather than a pro-death mechanism.

This review summarizes the evidence linking autophagy to cell survival and cell death, the complex interplay between autophagy and apoptosis pathways, and the role of autophagy-dependent survival and death pathways in clinical diseases.

---------------------------------------------------

整理之後:

摘要

垂死細胞中的自噬體可視化作用導致了對細胞自噬如下一種信念:即它是一種程序性細胞死亡的非凋亡「nonapoptotic」形式。

現在這個觀念已被使用在細胞和生物機體的自噬基因缺陷之評估當中。

多數證據表明:至少在完整凋亡機制的細胞之中,自噬作用主要是一種促-生存,而不是一種促-死亡的機制。

本文總結了那些細胞自噬與細胞生存以及細胞死亡相關的證據,細胞自噬與細胞凋亡的途徑之間的複雜相互作用,以及在臨床疾病中自噬依賴性生存和自噬依賴性死亡通道之作用。

HUABIN 初譯稿
作者: huabin    時間: 2015-4-20 05:57
標題: 曲度譯:細胞自噬--從現象到分子學了解不到十年

2007年第1篇:

Klionsky DJ.:Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007 Nov;8(11):931-7.

曲度譯:細胞自噬--從現象到分子學了解不到十年

Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, USA. klionsky@umich.edu

----------------------------------------------------------------------------
Abstract

In 2000, it was suggested to me that "Autophagy will be the wave of the future; it will become the new apoptosis."

Few people would have agreed at the time, but this statement turned out to be prophetic, and this process of 'self-eating' rapidly exploded as a research field, as scientists discovered connections to cancer, neurodegeneration and even lifespan extension.

Amazingly, the molecular breakthroughs in autophagy have taken place during only the past decade.

--------------------------------------------------

整理之後;

摘要

在2000年內,有人對我建議:「自噬將是未來的趨勢,它將會成為新的細胞凋亡。」

在當時,很少人會同意這一觀點,但是這個說法已被證明是一種先知先覺;因為,對這種「自吃」進程之研究,迅速擴長成為一個研究領域;同時科學家們發現它與癌症,神經退行性變,甚至壽命延長均相聯繫。

令人驚訝的是,過去10年中,在自噬研究領域中已經發生分子學研究之突破。

HUABIN 初譯稿


作者: huabin    時間: 2015-4-20 05:58
標題: 曲 度譯:自噬通過細胞自我消化作用抵抗疾病

2008年第1篇:

Mizushima N, Levine B, Cuervo AM,ET AL:Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb 28;451(7182):1069-75.

曲 度譯:自噬通過細胞自我消化作用抵抗疾病

Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.

----------------------------------------------------------------------------

Abstract
Autophagy, or cellular self-digestion, is a cellular pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology.

For example, autophagic dysfunction is associated with cancer, neurodegeneration, microbial infection and ageing.

Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health.

----------------------------------------------------------------------

整理之後:

摘要

細胞自噬(或細胞自我消化),是一種細胞通道,其涉及蛋白質和細胞器降解作用;並參與了數量驚人的人類疾病和生理過程。

例如,自噬功能障礙與癌症,神經退行性病變,微生物感染和老化相關。

矛盾的是,儘管自噬主要對於細胞起一種保護過程中,它也在細胞死亡中起著一定的作用。

認識細胞自噬現象,最終可能容許科學家和臨床醫生,利用這種過程以便達到改善人類健康之目的。

HUABIN 初譯稿


作者: huabin    時間: 2015-4-20 06:00
標題: 曲 度譯:自噬通過細胞自我消化作用抵抗疾病

2008年第1篇:

Mizushima N, Levine B, Cuervo AM,ET AL:Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb 28;451(7182):1069-75.

曲 度譯:自噬通過細胞自我消化作用抵抗疾病

Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.

----------------------------------------------------------------------------

Abstract
Autophagy, or cellular self-digestion, is a cellular pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology.

For example, autophagic dysfunction is associated with cancer, neurodegeneration, microbial infection and ageing.

Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health.

----------------------------------------------------------------------

整理之後:

摘要

細胞自噬(或細胞自我消化),是一種細胞通道,其涉及蛋白質和細胞器降解作用;並參與了數量驚人的人類疾病和生理過程。

例如,自噬功能障礙與癌症,神經退行性病變,微生物感染和老化相關。

矛盾的是,儘管自噬主要對於細胞起一種保護過程中,它也在細胞死亡中起著一定的作用。

認識細胞自噬現象,最終可能容許科學家和臨床醫生,利用這種過程以便達到改善人類健康之目的。

HUABIN 初譯稿


作者: huabin    時間: 2015-4-20 06:02
標題: 曲 度譯:腫瘤抑制因子p53的一些胞漿功能.


2009年第1篇:

Green DR, Kroemer G.:Cytoplasmic functions of the tumour suppressor p53,Nature. 2009 Apr 30;458(7242):1127-30.

曲 度譯:腫瘤抑制因子p53的一些胞漿功能.

Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. douglas.green@stjude.org

----------------------------------------------------------------------------

Abstract

The principal tumour-suppressor protein, p53, accumulates in cells in response to DNA damage, oncogene activation and other stresses.

It acts as a nuclear transcription factor that transactivates genes involved in apoptosis, cell cycle regulation and numerous other processes.

An emerging area of research unravels additional activities of p53 in the cytoplasm, where it triggers apoptosis and inhibits autophagy.

These previously unknown functions contribute to the mission of p53 as a tumour suppressor.

-----------------------------------------------------------------------

整理之後:

摘要

積聚在細胞內主要的腫瘤抑制蛋白「p53」,負責對DNA損傷,癌基因激活和其他應激活動做出反應。

它作為一個核轉錄因子,這種經活化的基因涉及細胞凋亡,細胞周期調控和許多其他進程的活動。

一個新興的研究領域揭開了在細胞質中p53其他額外的活動,它觸發細胞凋亡和抑制細胞自噬。

這些以前未知的功能有助於p53基因擔負起一種腫瘤抑制因子的使命。

HUABIN 初譯稿


作者: huabin    時間: 2015-4-20 06:04
標題: 曲 度譯:細胞自噬的調控機制和信號通路


2009年第2篇:

He C, Klionsky DJ.:Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67-93.

曲 度譯:細胞自噬的調控機制和信號通路

Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.

-----------------------------------------------------------------------------

Abstract

Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases.

Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases.

We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis.

We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.

-----------------------------------------------------------------------

整理如下:

摘要

自噬是一種細胞成分的自我降解過程;在該過程中,雙膜自噬體隔離細胞器或部分細胞質,並通過所在處的水解酶與溶酶體或液泡融合以便穿透。

在細胞外或細胞應激和某些信號(例如飢餓,生長因子匱乏,內質網應激,和病原體感染)條件的反應中,細胞自噬活動被上調。

缺陷性細胞自噬在人類發病過程中,包括癌症,神經退行性病變和傳染性疾病,起著一種顯著的作用。

我們提出一些自己的最新下列看法:從酵母到真核生物細胞的自噬機關鍵基因構成;對不同類型的應激狀態下的一些信號通路,以及誘導細胞生存及其動態平衡的自噬作用。

我們也對不同水平下調節自噬的分子機制(從轉錄激活作用到翻譯后蛋白修飾作用)方面的最新進展做了文獻複習。

HUABIN 初譯稿


作者: huabin    時間: 2015-4-20 06:07
標題: 曲 度譯:自食和自殺:自噬與凋亡之間的交談


曲 度譯:自食和自殺:自噬與凋亡之間的交談

Maiuri MC, Zalckvar E, Kimchi A,ET AL:Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52.

INSERM, U848, F-94805 Villejuif, France.

Abstract
The functional relationship between apoptosis ('self-killing') and autophagy ('self-eating') is complex in the sense that, under certain circumstances, autophagy constitutes a stress adaptation that avoids cell death (and suppresses apoptosis), whereas in other cellular settings, it constitutes an alternative cell-death pathway.

Autophagy and apoptosis may be triggered by common upstream signals, and sometimes this results in combined autophagy and apoptosis; in other instances, the cell switches between the two responses in a mutually exclusive manner.

On a molecular level, this means that the apoptotic and autophagic response machineries share common pathways that either link or polarize the cellular responses.

摘要:

細胞凋亡(「自殺」) 自體吞噬(「自食」)的功能之間的關係處於一種複雜的狀況之中;在某些情況下,細胞自噬構成了應激適應,這樣就可避免細胞死亡同時抑制細胞凋亡,而在其他的細胞設置中,它又構成了另一種細胞死亡途徑。

自噬與凋亡可能被一些共同的上游信號所觸發,有時這種混合就導致了自噬與凋亡;在其他情況下,在這兩種反應之間的細胞開關處於一種相互排斥的狀態。在分子水平上,這意味著在細胞凋亡和自噬的反應機制有著共同的通道,要麼鏈接或者要麼分化某些細胞反應。

PMID: 17717517

HUABIN初譯稿


作者: huabin    時間: 2015-4-20 06:10
標題: 這是Kerr寫的那篇有關"Apoptosis"文章之摘要!


這是Kerr寫的那篇有關"Apoptosis"文章之摘要!現Cited by 9956次!

從這篇文章開始,現用"Apoptosis"可檢索到近19萬次(189,904次)!

---------------------------------------------------------------------------------

Br J Cancer. 1972 August; 26(4): 239–257. PMCID: PMC2008650


Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics

J. F. R. Kerr, A. H. Wyllie, and A. R. Currie

From the departement of pathology, University of Aberdeen

This article has been cited by other articles in PMC.

---------------------------------------------------------------------------------

Abstract

The term apoptosis is proposed for a hitherto little recognized mechanism of controlled cell deletion, which appears to play a complementary but opposite role to mitosis in the regulation of animal cell populations.

Its morphological features suggest that it is an active, inherently programmed phenomenon, and it has been shown that it can be initiated or inhibited by a variety of environmental stimuli, both physiological and pathological.

The structural changes take place in two discrete stages. The first comprises nuclear and cytoplasmic condensation and breaking up of the cell into a number of membrane-bound, ultrastructurally well-preserved fragments.

In the second stage these apoptotic bodies are shed from epithelial-lined surfaces or are taken up by other cells, where they undergo a series of changes resembling in vitro autolysis within phagosomes, and are rapidly degraded by lysosomal enzymes derived from the ingesting cells.

Apoptosis seems to be involved in cell turnover in many healthy adult tissues and is responsible for focal elimination of cells during normal embryonic development.

It occurs spontaneously in untreated malignant neoplasms, and participates in at least some types of therapeutically induced tumour regression.

It is implicated in both physiological involution and atrophy of various tissues and organs. It can also be triggered by noxious agents, both in the embryo and adult animal.




作者: huabin    時間: 2015-4-20 06:13
標題: 比利時Christian 在1967年寫的涉及"AUTOPHAGY"的文獻


這是能檢索到的,

比利時學者Christian de Duve在1967年寫的一篇在標題中涉及"AUTOPHAGY"的文獻標題!

截今為止,用"AUTOPHAGY"可檢索的到6131篇英文文獻!  

------------------------------------------------------------------------------

J Cell Biol. 1967 November 1; 35(2): C11–C16. PMCID: PMC2107130

Copyright © 1967 by The Rockefeller University Press

Article

PARTICIPATION OF LYSOSOMES IN CELLULAR AUTOPHAGY INDUCED IN RAT LIVER BY GLUCAGON

Russell L. Deter, Pierre Baudhuin, and Christian de Duve

From the Laboratoire de Chimie Physiologique, University of Louvain, Belgium.

Dr. Deter's present address is Department of Anatomy, Baylor University College of Medicine, Houston, Texas

Received July 31, 1967

This article has been cited by other articles in PMC.



作者: huabin    時間: 2015-4-20 06:17
標題: 曲度編緝:自噬與凋亡在Pubmed所記錄的文獻數量比較I


曲度編緝:自噬與凋亡在Pubmed所記錄的文獻數量比較I

自噬(autophagy)與凋亡(apoptosis)在Pubmed所記錄的文獻數量比較表1

---------------------------------------------------------------------
.................凋亡(apoptosis) 自噬(autophagy)
---------------------------------------------------------------------
半年之內: 10248篇 ........ 896篇

一年之內: 19378篇 ........ 1616篇

二年之內: 36510篇 ........ 2810篇

三年之內: 53402篇 ........ 3624篇

五年之內: 85123篇 ........ 4551篇

十年之內: 150401篇 ........ 5207篇
-----------------------------------------------------------------------
全部文獻: 189904篇(72年始) 6131篇(65年始)
-----------------------------------------------------------------------

注:本人聲明保留該貼版權!如引用請註明出處!

D.QU

作者: huabin    時間: 2015-4-20 06:19
標題: 曲度編緝:自噬與凋亡在Pubmed所記錄的文獻數量比較II


曲度編緝:自噬與凋亡在Pubmed所記錄的文獻數量比較II

自噬(autophagy)與凋亡(apoptosis),Pubmed所記錄的文獻數量比較表2
----------------------------------------------------------------------
...............................凋亡(apoptosis) 自噬(autophagy)
----------------------------------------------------------------------
1960.1.1—1969。12.31..............0篇...................2篇
1970.1.1—1979。12.31............35篇...............145篇
1980.1.1—1989。12.31..........246篇...............356篇
1990.1.1—1999。12.31......31327篇...............316篇
2000.1.1—2009。12.31....145428篇.............4093篇
最近一年:
2001.1.1—2010。12.31......15327篇..............1351篇
-----------------------------------------------------------------------

注1:此表數字系在查Pubmed時得出,為何與上表總數有差異不甚清楚!

注2:本人聲明保留該貼版權!如引用請註明出處!

D.QU


作者: huabin    時間: 2015-4-20 06:22
標題: 曲 度:凋亡與自嗜兩者論文總數與增長情況

曲 度:凋亡與自嗜兩者論文總數與增長情況:

根據上表I數據,可以得出下面一個比較結果:

一.關於凋亡與自嗜兩者論文增長情況:

1.從近一年到近半年之間:有關凋亡的論文增長了1.89倍; 有關自嗜的論文增長了1.80倍;
2.從近二年到近一年之間:有關凋亡的論文增長了1.88倍; 有關自嗜的論文增長了1.73倍;
3.從近三年到近二年之間:有關凋亡的論文增長了1.46倍; 有關自嗜的論文增長了1.28倍;
4.從近五年到近三年之間:有關調亡的論文增長了1.59倍; 有關自噬的論文增長了1.26倍;

二.關於凋亡與自嗜兩者論文總數情況:

調亡論文189904篇/自嗜論文6131篇=30.81倍

D.QU
作者: huabin    時間: 2015-4-20 06:24


下面是可檢索到的最新50篇有關調亡之專業文獻!(截止2010.12)

--------------------------------------------------------------------------

1.Diabetic cystopathy is associated with PARP/JNK/ mitochondrial apoptotic pathway-mediated bladder apoptosis.

Li WJ, Oh SJ.

Neurourol Urodyn. 2010 Sep;29(7):1332-7.
PMID: 20879002 [PubMed - in process]

2.Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells.

Li B, Shi XB, Nori D, Chao CK, Chen AM, Valicenti R, de Vere White R.

Prostate. 2010 Sep 28. [Epub ahead of print]
PMID: 20878953 [PubMed - as supplied by publisher]
3.Comparison of MTT assay, flow cytometry, and RT-PCR in the evaluation of cytotoxicity of five prosthodontic materials.

Wang X, Xia Y, Liu L, Liu M, Gu N, Guang H, Zhang F.

J Biomed Mater Res B Appl Biomater. 2010 Sep 28. [Epub ahead of print]
PMID: 20878925 [PubMed - as supplied by publisher]
4.DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis.

Shao L, Goronzy JJ, Weyand CM.

EMBO Mol Med. 2010 Sep 28. [Epub ahead of print]
PMID: 20878914 [PubMed - as supplied by publisher]
5.MicroRNA expression changes during zebrafish development induced by perfluorooctane sulfonate.

Zhang L, Li YY, Zeng HC, Wei J, Wan YJ, Chen J, Xu SQ.

J Appl Toxicol. 2010 Sep 28. [Epub ahead of print]
PMID: 20878907 [PubMed - as supplied by publisher]
6.Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrP(Sc), even upon LPS stimulation.

Hughes MM, Field RH, Perry VH, Murray CL, Cunningham C.

Glia. 2010 Sep 27. [Epub ahead of print]
PMID: 20878768 [PubMed - as supplied by publisher]
7.Statin-associated myopathy and its exacerbation with exercise.

Meador BM, Huey KA.

Muscle Nerve. 2010 Oct;42(4):469-79.
PMID: 20878737 [PubMed - in process]
8.[Impact of fragile histidine triad gene transfection on the proliferation and apoptosis of human colorectal cancer cell.]

Cao J, Liang LY, Yang P, Qian YJ, Wang H, Sun Z, Li WL, Tan MH.

Zhonghua Wei Chang Wai Ke Za Zhi. 2010 Sep;13(9):691-4. Chinese.
PMID: 20878579 [PubMed - in process]
9.Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca(2+) fluxes in oxidative cell death.

Blenn C, Wyrsch P, Bader J, Bollhalder M, Althaus FR.

Cell Mol Life Sci. 2010 Sep 29. [Epub ahead of print]
PMID: 20878536 [PubMed - as supplied by publisher]
10.Combined treatment with TRAIL and PPARγ ligands overcomes chemoresistance of ovarian cancer cell lines.

Bräutigam K, Biernath-Wüpping J, Bauerschlag DO, von Kaisenberg CS, Jonat W, Maass N, Arnold N, Meinhold-Heerlein I.

J Cancer Res Clin Oncol. 2010 Sep 29. [Epub ahead of print]
PMID: 20878528 [PubMed - as supplied by publisher]
11.1p36.32 rearrangements and the role of PI-PLC η2 in nervous tumours.

Lo Vasco VR.

J Neurooncol. 2010 Sep 29. [Epub ahead of print]
PMID: 20878447 [PubMed - as supplied by publisher]
12.Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines.

Lundh M, Christensen DP, Rasmussen DN, Mascagni P, Dinarello CA, Billestrup N, Grunnet LG, Mandrup-Poulsen T.

Diabetologia. 2010 Sep 28. [Epub ahead of print]
PMID: 20878317 [PubMed - as supplied by publisher]
13.Subcellular TSC22D4 Localization in Cerebellum Granule Neurons of the Mouse Depends on Development and Differentiation.

Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F, Fiorenza MT.

Cerebellum. 2010 Sep 28. [Epub ahead of print]
PMID: 20878296 [PubMed - as supplied by publisher]
14.Functional properties of synthetic N-acyl-L-homoserine lactone analogs of quorum-sensing gram-negative bacteria on the growth of human oral squamous carcinoma cells.

Chai H, Hazawa M, Shirai N, Igarashi J, Takahashi K, Hosokawa Y, Suga H, Kashiwakura I.

Invest New Drugs. 2010 Sep 28. [Epub ahead of print]
PMID: 20878204 [PubMed - as supplied by publisher]
15.Suppressed protein expression of the death-associated protein kinase enhances 5-fluorouracil-sensitivity but not etoposide-sensitivity in human endometrial adenocarcinoma cells.

Tanaka T, Bai T, Yukawa K.

Oncol Rep. 2010 Nov;24(5):1401-5.
PMID: 20878137 [PubMed - in process]
16.microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2.

Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F.

Oncol Rep. 2010 Nov;24(5):1363-9.
PMID: 20878132 [PubMed - in process]
17.Knockdown of the c-Jun-N-terminal kinase expression by siRNA inhibits MCF-7 breast carcinoma cell line growth.

Parra E, Ferreira J.

Oncol Rep. 2010 Nov;24(5):1339-45.
PMID: 20878129 [PubMed - in process]
18.Replication-dependent γ-H2AX formation is involved in docetaxel-induced apoptosis in NSCLC A549 cells.

Zhang F, Zhang T, Qu Y, Jiang T, Cao YX, Li C, Fan L, Mei QB.

Oncol Rep. 2010 Nov;24(5):1297-305.
PMID: 20878124 [PubMed - in process]
19.Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway.

Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H.

Oncol Rep. 2010 Nov;24(5):1217-23.
PMID: 20878113 [PubMed - in process]
20.Regulation of apoptosis by p53-inducible transmembrane protein containing sushi domain.

Cui H, Kamino H, Nakamura Y, Kitamura N, Miyamoto T, Shinogi D, Goda O, Arakara H, Futamura M.

Oncol Rep. 2010 Nov;24(5):1193-200.
PMID: 20878110 [PubMed - in process]
21.Discrepancy of biologic behavior influenced by bone marrow derived cells in lung cancer.

Zhang J, Niu XM, Liao ML, Liu Y, Sha HF, Zhao Y, Yu YF, Tan Q, Xiang JQ, Fang J, Lv DD, Li XB, Lu S, Chen HQ.

Oncol Rep. 2010 Nov;24(5):1185-92.
PMID: 20878109 [PubMed - in process]
22.Induction of apoptosis by HAC-Y6, a novel microtubule inhibitor, through activation of the death receptor 4 signaling pathway in human hepatocellular carcinoma cells.

Tsai JY, Hung CM, Bai ST, Huang CH, Chen WC, Chung JG, Kuo SC, Way TD, Huang LJ.

Oncol Rep. 2010 Nov;24(5):1169-78.
PMID: 20878107 [PubMed - in process]
23.Schedule-dependent antitumor activity of the combination with erlotinib and docetaxel in human non-small cell lung cancer cells with EGFR mutation, KRAS mutation or both wild-type EGFR and KRAS.

Furugaki K, Iwai T, Shirane M, Kondoh K, Moriya Y, Mori K.

Oncol Rep. 2010 Nov;24(5):1141-6.
PMID: 20878103 [PubMed - in process]
24.Differential regulation of proliferation, cell cycle control and gene expression in cultured human aortic and pulmonary artery endothelial cells by resveratrol.

Hsieh TC, Lu X, Guo J, Wu JM.

Int J Mol Med. 2010 Nov;26(5):743-9.
PMID: 20878097 [PubMed - in process]
25.Simvastatin inhibits cell growth and induces apoptosis and G0/G1 cell cycle arrest in hepatic cancer cells.

Relja B, Meder F, Wilhelm K, Henrich D, Marzi I, Lehnert M.

Int J Mol Med. 2010 Nov;26(5):735-41.
PMID: 20878096 [PubMed - in process]
26.Induction of apoptosis by 5,7-dihydroxy-8-nitrochrysin in breast cancer cells: The role of reactive oxygen species and Akt.

Zhao XC, Tian L, Cao JG, Liu F.

Int J Oncol. 2010 Nov;37(5):1345-52.
PMID: 20878083 [PubMed - in process]
27.Hedyotis Diffusa Willd extract induces apoptosis via activation of the mitochondrion-dependent pathway in human colon carcinoma cells.

Lin J, Chen Y, Wei L, Chen X, Xu W, Hong Z, Sferra TJ, Peng J.

Int J Oncol. 2010 Nov;37(5):1331-8.
PMID: 20878081 [PubMed - in process]
28.Calpain is involved in cisplatin-induced endothelial injury in an in vitro three-dimensional blood vessel model.

Eguchi R, Fujimori Y, Ohta T, Kunimasa K, Nakano T.

Int J Oncol. 2010 Nov;37(5):1289-96.
PMID: 20878076 [PubMed - in process]
29.Cantharidin induces apoptosis in human bladder cancer TSGH 8301 cells through mitochondria-dependent signal pathways.

Kuo JH, Chu YL, Yang JS, Lin JP, Lai KC, Kuo HM, Hsia TC, Chung JG.

Int J Oncol. 2010 Nov;37(5):1243-50.
PMID: 20878071 [PubMed - in process]
30.Triptolide inactivates Akt and induces caspase-dependent death in cervical cancer cells via the mitochondrial pathway.

Kim MJ, Lee TH, Kim SH, Choi YJ, Heo J, Kim YH.

Int J Oncol. 2010 Nov;37(5):1177-85.
PMID: 20878065 [PubMed - in process]
31.Mechanisms behind COX-1 and COX-2 inhibition of tumor growth in vivo.

Axelsson H, Lönnroth C, Andersson M, Lundholm K.

Int J Oncol. 2010 Nov;37(5):1143-52.
PMID: 20878062 [PubMed - in process]
32.Identification of NEEP21, encoding neuron-enriched endosomal protein of 21 kDa, as a transcriptional target of tumor suppressor p53.

Ohnishi S, Futamura M, Kamino H, Nakamura Y, Kitamura N, Miyamoto Y, Miyamoto T, Shinogi D, Goda O, Arakawa H.

Int J Oncol. 2010 Nov;37(5):1133-41.
PMID: 20878061 [PubMed - in process]
33.Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration.

Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH.

PLoS Biol. 2010 Sep 21;8(9). pii: e1000479.
PMID: 20877715 [PubMed - in process]
34.CXCL12 Chemokine Expression and Secretion Regulates Colorectal Carcinoma Cell Anoikis through Bim-Mediated Intrinsic Apoptosis.

Drury LJ, Wendt MK, Dwinell MB.

PLoS One. 2010 Sep 22;5(9). pii: e12895.
PMID: 20877573 [PubMed - in process]
35.Gene expression profiles of colonic mucosa in healthy young adult and senior dogs.

Kil DY, Vester Boler BM, Apanavicius CJ, Schook LB, Swanson KS.

PLoS One. 2010 Sep 22;5(9). pii: e12882.
PMID: 20877568 [PubMed - in process]
36.siRNA-Based Targeting of Cyclin E Overexpression Inhibits Breast Cancer Cell Growth and Suppresses Tumor Development in Breast Cancer Mouse Model.

Liang Y, Gao H, Lin SY, Goss JA, Brunicardi FC, Li K.

PLoS One. 2010 Sep 20;5(9). pii: e12860.
PMID: 20877462 [PubMed - in process]
37.Improved mitochondrial function in brain aging and Alzheimer disease - the new mechanism of action of the old metabolic enhancer piracetam.

Leuner K, Kurz C, Guidetti G, Orgogozo JM, Müller WE.

Front Neurosci. 2010 Sep 7;4. pii: 44.
PMID: 20877425 [PubMed - in process]
38.Fenretinide-dependent upregulation of death receptors through ASK1 and p38α enhances death receptor ligand-induced cell death in Ewing's sarcoma family of tumours.

White DE, Burchill SA.

Br J Cancer. 2010 Sep 28. [Epub ahead of print]
PMID: 20877355 [PubMed - as supplied by publisher]
39.A Therapeutic Approach to Nasopharyngeal Carcinomas by DNAzymes Targeting EBV LMP-1 Gene.

Yang L, Lu Z, Ma X, Cao Y, Sun LQ.

Molecules. 2010 Sep 1;15(9):6127-39.
PMID: 20877211 [PubMed - in process]
40.Geno-transcriptomic dissection of proteinuria in the uninephrectomized rat uncovers a molecular complexity with sexual dimorphism.

Yagil Y, Hessner MJ, Schulz H, Gosele C, Lebdev L, Barkalifa R, Sapojnikov M, Hubner N, Yagil C.

Physiol Genomics. 2010 Sep 28. [Epub ahead of print]
PMID: 20876844 [PubMed - as supplied by publisher]
41.Inhibition of Autophagy Enhances Anticancer Effects of Atorvastatin in Digestive Malignancies.

Yang PM, Liu YL, Lin YC, Shun CT, Wu MS, Chen CC.

Cancer Res. 2010 Sep 28. [Epub ahead of print]
PMID: 20876807 [PubMed - as supplied by publisher]
42.Activity of the Novel Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235 against T-Cell Acute Lymphoblastic Leukemia.

Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A, Battistelli M, Falcieri E, Melchionda F, Pession A, Pagliaro P, McCubrey JA, Martelli AM.

Cancer Res. 2010 Sep 28. [Epub ahead of print]
PMID: 20876803 [PubMed - as supplied by publisher]
43.RasGRP3 Contributes to Formation and Maintenance of the Prostate Cancer Phenotype.

Yang D, Kedei N, Li L, Tao J, Velasquez JF, Michalowski AM, Tóth BI, Marincsák R, Varga A, Bíró T, Yuspa SH, Blumberg PM.

Cancer Res. 2010 Sep 28. [Epub ahead of print]
PMID: 20876802 [PubMed - as supplied by publisher]
44.Aerobic Glycolysis Suppresses p53 Activity to Provide Selective Protection from Apoptosis upon Loss of Growth Signals or Inhibition of BCR-Abl.

Mason EF, Zhao Y, Goraksha-Hicks P, Coloff JL, Gannon H, Jones SN, Rathmell JC.

Cancer Res. 2010 Sep 28. [Epub ahead of print]
PMID: 20876800 [PubMed - as supplied by publisher]
45.Preclinical Characterization of Mitochondria-Targeted Small Molecule Hsp90 Inhibitors, Gamitrinibs, in Advanced Prostate Cancer.

Kang BH, Siegelin MD, Plescia J, Raskett CM, Garlick DS, Dohi T, Lian JB, Stein GS, Languino LR, Altieri DC.

Clin Cancer Res. 2010 Sep 28. [Epub ahead of print]
PMID: 20876793 [PubMed - as supplied by publisher]
46.Identification of c-FLIPL and c-FLIPS as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells.

Haag C, Stadel D, Zhou S, Bachem MG, Möller P, Debatin KM, Fulda S.

Gut. 2010 Sep 28. [Epub ahead of print]
PMID: 20876774 [PubMed - as supplied by publisher]
47.Different effects of oleate versus palmitate on mitochondrial function, apoptosis and insulin signaling in L6 skeletal muscle cells: role of oxidative stress.

Yuzefovych L, Wilson G, Rachek L.

Am J Physiol Endocrinol Metab. 2010 Sep 28. [Epub ahead of print]
PMID: 20876761 [PubMed - as supplied by publisher]
48.Colon Tumor Cell Growth-Inhibitory Activity of Sulindac Sulfide and Other Nonsteroidal Anti-Inflammatory Drugs Is Associated with Phosphodiesterase 5 Inhibition.

Tinsley HN, Gary BD, Thaiparambil J, Li N, Lu W, Li Y, Maxuitenko YY, Keeton AB, Piazza GA.

Cancer Prev Res (Phila). 2010 Sep 28. [Epub ahead of print]
PMID: 20876730 [PubMed - as supplied by publisher]
49.Potential cytotoxic effect of hydroxypyruvate produced from D-serine by astroglial D-amino acid oxidase.

Chung SP, Sogabe K, Park HK, Song Y, Ono K, Abou El-Magd RM, Shishido Y, Yorita K, Sakai T, Fukui K.

J Biochem. 2010 Sep 27. [Epub ahead of print]
PMID: 20876609 [PubMed - as supplied by publisher]
50.TGF-{beta}1 protects against mesangial cell apoptosis via induction of autophagy.

Ding Y, Kim JK, Kim SI, Na HJ, Jun SY, Lee SJ, Choi ME.

J Biol Chem. 2010 Sep 28. [Epub ahead of print]
PMID: 20876581 [PubMed - as supplied by publisher]



作者: huabin    時間: 2015-4-20 06:28
標題: 曲度:"細胞死亡通道"的問題對人類來說至今它是一個黑洞"

曲度:"細胞死亡通道"的問題對人類來說至今它是一個黑洞"

"細胞死亡通道"的問題,至今它是一個人類認識領域的"黑洞",本人預計在至少100年內,不可能會有根本性的突破!

原因在於:"細胞"本身就相當與一個"小宇宙"! 人類研究"細胞"其困難程度一點都不會小於研究"宇宙"!能說不困難?

此外,研究"細胞死亡通道"問題,就好似研究臨床機體整體層次的"多臟器衰竭死亡"問題一樣!

如果后一個問題那麼容易攻克,臨床還會死人嗎! 您說有可能嗎?前者也同此理!只是層次不同!

D.QU
作者: huabin    時間: 2015-4-20 06:31
標題: 曲 度譯:"天龍,DRACO"到底是什麼?


廣譜抗病毒物質"天龍,DRACO"與細胞凋亡:

鏈接:http://news.dxy.cn/bbs/topic/21562857

曲 度譯:"天龍,DRACO"到底是什麼?DRACO廣譜抗病毒之機制!

引自原文如下:

In its simplest form, a DRACO is a chimeric protein with one domain that binds to viral dsRNA and a second domain (e.g., a procaspase-binding domain or a procaspase) that induces apoptosis when two or more DRACOs crosslink on the same dsRNA.

DRACO其最簡單形式就是一種嵌合蛋白;其一個區域與病毒dsRNA結合,第二個區域(例如:一個前半胱天冬酶"procaspase"結合區域,或者一個前半胱天冬酶"procaspase"結合區域)則誘導細胞凋亡(當兩個或兩個以上的DRACOs交聯相同的dsRNA之時。)

If viral dsRNA is present inside a cell, DRACOs will bind to the dsRNA and induce apoptosis of that cell. If viral dsRNA is not present inside the cell, DRACOs will not crosslink and apoptosis will not occur.

如果病毒雙鏈RNA存在細胞內,DRACOs將結合雙鏈RNA,並誘導該細胞凋亡。如果病毒dsRNA在細胞內不存在,DRACOs將不會發生交聯,細胞凋亡也就不會發生。

--------------------------------------------------------------------------------------------------------------------------------------------
"天龍,DRACO"是什麼?

"天龍,DRACO"是下列一組專業英文詞的縮寫:

Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO)
即是一種"活化Caspase Oligomerizer的雙鏈RNA" !
Oligomerizer這個詞不好譯,先放在這裡;有誰能譯嗎?

--------------------------------------------------------------------------------------------------------------------------------------------

HUABIN註釋:

1.Caspase 是細胞死亡酶系之中的一個家族!其在1996年被命此名,前面的"C"指的是半胱氨酸,後面的"aspase "指的是天門冬氨酸.可以簡稱為"半胱天冬酶"!Caspase 現被認為是程序性細胞死亡(PCD)之關鍵,任何引起細胞凋亡的基因(例如Fas死亡因子, P53,TNFR1等)均須激活Caspase 方能引起PCD;故上述因子也被稱為促細胞凋亡基因,反之則為抗細胞凋亡基因(例如,BCL-2,P35等).

2.Oligomerizer 其前面部分的"Oligo"是一個前綴詞,表示"過少,不足,微,寡"等義之字干;Oligomerizer其後面部分的"merizer"查不到,僅在新英漢醫學大辭典中查到"merisis"(裂生,分裂性增大)與"merism"(裂殖)兩個相近的詞.

--------------------------------------------------------------------------------------------------------------------------------------------

Introduction

A serious threat is posed by viral pathogens, including clinical viruses (HIV, hepatitis viruses, etc.), natural emerging viruses (avian and swine influenza strains, SARS, etc.), and viruses relevant to potential bioterrorism (Ebola, smallpox, etc.). Unfortunately, there are relatively few prophylactics or therapeutics for these viruses, and most which do exist can be divided into three broad categories [1]–[3]:

(1) Specific inhibitors of a virus associated target (e.g., HIV protease inhibitors, RNAi) generally must be developed for each virus or viral strain, are prone to resistance if a virus mutates the drug target, are not immediately available for emerging or engineered viral threats, and can have unforeseen adverse effects.

(2) Vaccines also require a new vaccine to be developed for each virus or viral strain, must be administered before or in some cases soon after exposure to be effective, are not immediately available for emerging or engineered viral threats, can have unforeseen adverse effects, and are difficult to produce for certain pathogens (e.g., HIV).

(3) Interferons and other pro- or anti-inflammatories are less virus specific, but still are only useful against certain viruses, and they can have serious adverse effects through their interactions with the immune and endocrine systems.

To overcome these shortcomings of existing approaches, we have developed and demonstrated a novel antiviral approach that is effective against a very broad spectrum of viruses, nontoxic in vitro and in vivo, and potentially suitable for either prophylactic or therapeutic administration. Our approach, which we call a Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO), is designed to selectively and rapidly kill virus-infected cells while not harming uninfected cells.

Our DRACO approach combines two natural cellular processes. The first process involves dsRNA detection in the interferon pathway. Most viruses have double- or single-stranded RNA (ssRNA) genomes and produce long dsRNA helices during transcription and replication; the remainder of viruses have DNA genomes and typically produce long dsRNA via symmetrical transcription [4]–[5]. In contrast, uninfected mammalian cells generally do not produce long dsRNA (greater than ~21–23 base pairs) [4]–[5]. Natural cellular defenses exploit this difference in order to detect and to attempt to counter viral infections [6]–[7]. For example, protein kinase R (PKR) contains an N-terminal domain with two dsRNA binding motifs (dsRBM 1 and 2) and a C-terminal kinase domain [8]–[9]. Binding of multiple PKR proteins to dsRNA with a length of at least 30–50 base pairs [5] activates the PKRs via trans-autophosphorylation; activated PKR then phosphorylates eIF-2α, thereby inhibiting translation of viral (and cellular) proteins. Other examples of proteins that detect viral dsRNA include 2′,5′-oligoadenylate (2–5A) synthetases [10], RNase L (activated via dimerization by 2–5A produced by 2–5A synthetases in response to dsRNA [11]), TLR 3 [12], interferon-inducible ADAR1 [13], and RIG-I and Mda-5 [6]–[7].

The second natural process used by our approach is one of the last steps in the apoptosis pathway [14], in which complexes containing intracellular apoptosis signaling molecules, such as apoptotic protease activating factor 1 (Apaf-1) [15]–[16] or FLICE-activated death domain (FADD) [17]–[18], simultaneously bind multiple procaspases. The procaspases transactivate via cleavage, activate additional caspases in the cascade, and cleave a variety of cellular proteins [14], thereby killing the cell.

Many viruses attempt to counter these defenses. A wide variety of viruses target dsRNA-induced signaling proteins, including IPS-1, interferon response factors (IRFs), interferons and interferon receptors, JAK/STAT proteins, and eIF-2α [19]–[20]. Some viral products attempt to sequester dsRNA (e.g., poxvirus E3L [21]) or to directly interfere with cellular dsRNA binding domains (e.g., HIV TAR RNA [19]–[20]). Virtually all viruses that inhibit apoptosis do so by targeting early steps in the pathway, for example by inhibiting p53, mimicking anti-apoptotic Bcl-2, or interfering with death receptor signaling [22]–[23]. Among the few viral proteins that directly inhibit one or more caspases are African swine fever virus A224L (which inhibits caspase 3) [24], poxvirus CrmA (which inhibits caspases 1, 8, and 10 but not others) [25], and baculovirus p35 (which inhibits several caspases but is relatively ineffective against caspase 9) [25].

Because PKR activation and caspase activation function in similar ways and involve proteins that have separate domains with well-defined functions, these two processes can be combined to circumvent most viral blockades [26]–[27]. In its simplest form, a DRACO is a chimeric protein with one domain that binds to viral dsRNA and a second domain (e.g., a procaspase-binding domain or a procaspase) that induces apoptosis when two or more DRACOs crosslink on the same dsRNA. If viral dsRNA is present inside a cell, DRACOs will bind to the dsRNA and induce apoptosis of that cell. If viral dsRNA is not present inside the cell, DRACOs will not crosslink and apoptosis will not occur.

For delivery into cells in vitro or in vivo, DRACOs can be fused with proven protein transduction tags, including a sequence from the HIV TAT protein [28], the related protein transduction domain 4 (PTD) [29], and polyarginine (ARG) [30]. These tags have been shown to carry large cargo molecules into both the cytoplasm and the nucleus of all cell types in vitro and in vivo, even across the blood-brain barrier.




Results and Discussion

We produced DRACOs with different dsRNA detection domains, apoptosis induction domains, and transduction tags (Figure 1). The dsRNA detection domains included PKR1–181, PKR1–181 with dsRBM 1 (NTE3L), dsRBM 2 (CTE3L), or dsRBM 1 and 2 (2×E3L) replaced by the dsRNA binding motif from poxvirus E3L, and RNaseL1–335 (which binds to 2–5A produced by endogenous cellular 2–5A synthetases in response to viral dsRNA). The apoptosis induction domains included FADD1–90 Death Effector Domain (DED, which binds to procaspase 8), Apaf-11–97 caspase recruitment domain (CARD, which binds to procaspase 9), and murine Apaf-11–97 (mApaf) CARD. Except for mApaf, all domains refer to the human sequence. Isolated dsRNA detection domains and apoptosis induction domains were produced as negative controls. Mutant DRACOs with deleterious K64E [9] and homologous K154E mutations in the PKR domain were also produced as negative controls. Proteins were produced with TAT, PTD, or ARG tags on the N terminus, C terminus, or both termini. Proteins were expressed in BL21(DE3)pLysS Rosetta E. coli. An empty expression vector was transformed into the E. coli and the same purification protocol was followed, resulting in control extract without DRACOs.  

作者: huabin    時間: 2015-4-20 06:33


接上頁:




Figure 2.DRACOs penetrated cells and persisted for days.

(A) DRACOs with PTD or TAT tags entered H1-HeLa cells more readily than DRACO without a transduction tag. 400 nM PKR-Apaf
DRACO was added to medium for 1 hour, and then cells were trypsinized and washed to remove any DRACO on the cell surface.
Cells were lysed and analyzed for DRACO by westerns using anti-His6 antibodies. Lysate from approximately 105 cells was loaded
in each lane. A known amount of purified PKR-Apaf DRACO was used as a standard as indicated. (B) DRACOs entered HeLa cells
within 10 minutes and reached a maximum after 1.5 hours. 400 nM TAT-PKR-Apaf DRACO was added to medium for the specified
time, and then cells were analyzed as in (A). (C) DRACOs persisted within HeLa cells for at least 8 days. 500 nM PTD-PKR-Apaf
DRACO was added to cell medium for 1 hour, and then cells were put into DRACO-free medium. After the specified number of days,
cells were analyzed as in (A).

doi:10.1371/journal.pone.0022572.g002



Figure 3.DRACOs mediated apoptosis in cells containing dsRNA.

L929 cells transfected with both DRACO and poly(I):poly(C) dsRNA exhibited apoptosis within 24 hours, whereas cells that received
only DRACO did not. Caspase inhibitors eliminated DRACO-mediated apoptosis in the presence of dsRNA.

doi:10.1371/journal.pone.0022572.g003

We measured the viability of normal human lung fibroblast (NHLF) cells that had been treated with PKR-Apaf DRACOs or negative

controls and then challenged with 130 plaque forming units (pfu) per well rhinovirus 1B (Figures 4, S2, S3).
Untreated cell populations succumbed to virus within days, indicating that any innate cellular responses were ineffective against the
virus or blocked by the virus. DRACOs with PTD, TAT, and ARG tags prevented significant cytopathic effects (CPE) in virus-challenged
cell populations by rapidly killing any initially infected cells, thereby terminating the infection in its earliest stages. DRACOs had no
apparent toxicity in unchallenged cells. Isolated PKR1–181 and Apaf-11–97 domains were nontoxic but not antiviral, even when added
simultaneously (but not covalently linked). DRACO with deleterious amino acid changes also had little efficacy. Likewise, an amount
of purified bacterial extract (without DRACOs) approximately 10-fold greater than the average volume of DRACOs added to cells was
nontoxic and not efficacious, demonstrating that any remaining bacterial contaminants such as lipopolysaccharide did not affect
the cells or produce antiviral activity. Thus the antiviral efficacy
appears to require intact functional DRACOs. Tests using DRACOs with protein transduction tags on the N terminus, C terminus,
or both termini indicated that N-terminal tags generally worked the best (data not shown). DRACOs with transduction tags penetrated cells and were antiviral when
administered by themselves (Figures 2, S2A), but efficacy was enhanced by co-administration with Roche FuGene 6 to maximize uptake (Figure S2B), so FuGene was used in experiments unless otherwise noted. Cell viability measured 7 days post infection (dpi) showed little difference if DRACO-containing medium was removed 3 dpi after untreated cells had widespread CPE; there was no relapse of viral CPE in treated cells
after DRACOs were withdrawn (Figure 4B).




Figure 4.DRACOs were effective against rhinovirus 1B in NHLF cells.

(A) 100 nM DRACO was effective against 130 pfu/well rhinovirus, whereas 100 nM negative controls were not (12 dpi). (B) Cell
viability measured 7 dpi showed little difference if 100 nM DRACO-containing medium was removed 3 dpi when untreated cells
had widespread CPE from 130 pfu/well rhinovirus 1B; there was no relapse of viral CPE in treated cells after DRACOs were
withdrawn. (C) 1 dose of 25 nM PTD-PKR-Apaf DRACO was effective against rhinovirus 1B in NHLF cells when it was added from
6 days before infection to 3 days after infection. (Complete viral CPE in untreated cell populations required 3–4 days in our
experiments, and for these experiments a significant fraction of cells were still uninfected 3 dpi.) Cell viability was measured 14 dpi.

doi:10.1371/journal.pone.0022572.g004

DRACOs were added approximately 24 hours before virus unless otherwise noted, but other dosing times were tested (Figure 4C).
One dose of PTD-PKR-Apaf DRACO was efficacious against rhinovirus 1B in NHLF cells when added up to 6 days before infection,
supporting the western data (Figure 2C) that DRACO persisted inside cells for at least 8 days. Up to 3 days after infection, one
DRACO dose could still rescue a significant percentage of the cell population. After 3 days, virtually all of the cells had already been
killed or at least infected by the virus.

Additional DRACO designs exhibited efficacy against rhinovirus (Figure 5A). Other effective dsRNA detection domains included
NTE3L, CTE3L, 2×E3L, and RNaseL1–335. Other effective apoptotic domains included FADD1–90, mApaf11–97, and procaspases
[26]–[27]. Although the initial performance of these alternate DRACOs was generally inferior to that of PKR-Apaf human DRACO
in these experiments, better performance might be achieved with further optimization. These results demonstrate that the alternate
DRACO designs are nontoxic and efficacious against virus, and they support the DRACO mechanism of action.


作者: huabin    時間: 2015-4-20 06:36

(接上面)

Figure 5.DRACOs were effective against rhinovirus 1B and other viruses.

(A) Multiple 100 nM DRACOs were effective against 130 pfu/well rhinovirus (4 dpi). Even better performance of these alternate DRACOs might be achieved with further optimization. (B) PKR-Apaf DRACOs reduced the viral titer in supernatant from NHLF cells challenged with 300 pfu/well rhinovirus 1B to undetectable levels. PKR and Apaf-1 domains not covalently linked increased viral titers somewhat, possibly by interfering with the antiviral activity of endogenous wild-type PKR and Apaf-1. Cells were treated with 100 nM DRACO or controls. Supernatants were collected 4 dpi and their viral titers determined by serial dilution onto fresh 96-well NHLF plates. (C) The EC50 for PTD-PKR-Apaf DRACO was 2–3 nM against 130 pfu/well rhinovirus 1B in NHLF cells (measured 3 dpi), and 50 pfu/well murine encephalomyelitis (3 dpi) and 50 pfu/well murine adenovirus (11 dpi) in L929 cells.

doi:10.1371/journal.pone.0022572.g005

In addition to improving survival of the cell population, DRACOs reduced viral titers from virus-challenged cells (Figures 5B, S4). One dose of PKR-Apaf DRACO administered to NHLF cells 24 hours before 300 pfu/well rhinovirus 1B eliminated any measurable viral titer in cell supernatant samples collected 4 dpi.

The median effective concentration for DRACOs with PTD, TAT, and ARG tags against a variety of viruses was 2–3 nM, as illustrated for PTD-PKR-Apaf DRACO against rhinovirus 1B, murine encephalomyelitis, and murine adenovirus (Figures 5C).

DRACOs were effective against a broad spectrum of other viruses in a variety of cell types (Tables 1–2). DRACOs were effective against rhinoviruses 2 and 30 in NHLF cells (data not shown) and rhinovirus 14 in HeLa cells (Figure S4). DRACOs were effective against murine adenovirus in L929 cells if added before or up to at least 72 hours after virus (Figures 6, S5), demonstrating efficacy against a DNA virus (Figures 6A, S5), in murine cells (using human apoptotic DRACO domains to recruit endogenous murine procaspases), when treatment is delayed until significantly after infection (Figure 6B), and with a variety of DRACO designs (Figure 6C). DRACOs were effective against murine encephalomyelitis in L929 cells regardless of whether the DRACO-containing medium was removed 3 dpi (Figure 7A), whether DRACOs were added before or after infection (Figure 7B), and which DRACOs were used (Figures 7C, S6). DRACOs were effective in Vero E6 cells against Amapari and Tacaribe, arenaviruses that are closely related to lymphocytic choriomeningitis virus (LCMV), Lassa, and Junin viruses (Figures 8A, S7, S8). Likewise, DRACOs were effective against Guama strain Be An 277 (Figures 8B, S9); comparable results were obtained for Guama strain Be Ar 12590 (data not shown). Guama virus is a significant human pathogen and is closely related to other bunyaviruses such as Rift Valley fever, hantavirus, and Crimean-Congo virus. DRACOs were similarly effective against dengue type 2 (New Guinea C) hemorrhagic fever virus, a major human pathogen that is very closely related to other flaviviruses such as West Nile virus, Yellow fever virus, and Omsk virus (Figures 8C, S10, S11). DRACOs were also effective against H1N1 influenza A/PR/8/34 in normal human hepatocytes (Figure S12 left), reovirus 3 in BALB/3T3 murine cells (Figure S12 center), and adenovirus 5 in AD293 cells (Figure S12 right).


Figure 6.DRACOs were effective against murine adenovirus in L929 cells.

(A) 100 nM DRACOs were effective against 50 pfu/well murine adenovirus, whereas all negative controls were not (16 dpi). (B) 100 nM PTD-PKR-Apaf DRACO was effective if added before or up to at least 72 hours after adenovirus (16 dpi). (C) Multiple 100 nM DRACOs were effective against 50 pfu/well murine adenovirus (11 dpi). Even better performance of these alternate DRACOs might be achieved with further optimization.

doi:10.1371/journal.pone.0022572.g006



Figure 7.DRACOs were effective against murine encephalomyelitis in L929 cells.

(A) 100 nM DRACOs were effective against 50 pfu/well encephalomyelitis. Cell viability measured 6 dpi showed little difference if DRACO-containing medium was removed 3 dpi when untreated cells had widespread CPE; there was no relapse of viral CPE in treated cells after DRACOs were withdrawn. (B) 100 nM PTD-PKR-Apaf DRACO was effective if added before, simultaneously with, or up to at least 6 hours after encephalomyelitis. (C) Multiple 100 nM DRACOs were effective against 50 pfu/well murine encephalomyelitis (4 dpi). Even better performance of these alternate DRACOs might be achieved with further optimization.

doi:10.1371/journal.pone.0022572.g007


Figure 9.DRACOs appeared promising when administered via intraperitoneal (i.p.) injection in proof-of-concept trials with adult BALB/c mice.

(A) 2.5 mg PTD-PKR-Apaf DRACO administered i.p. penetrated the liver, kidney, and lungs and persisted for at least 48 hours. Averages of 3 mice per data point are plotted, and error bars show s.e.m. (B) PTD-PKR-Apaf and TAT-PKR-Apaf DRACOs administered i.p. from day -1 through day 3 greatly reduced the morbidity and day-2 lung viral titers in mice challenged intranasally (i.n.) with 1.3 LD50 influenza H1N1 A/PR/8/34. (C) PTD-RNaseL-Apaf, TAT-RNaseL-Apaf, and ARG-RNaseL-Apaf DRACOs administered i.p. from day -1 through day 3 greatly reduced the morbidity and day-2 lung viral titers in mice challenged i.n. with 0.3 LD50 influenza H1N1 A/PR/8/34.

doi:10.1371/journal.pone.0022572.g009


Figure 10.DRACOs appeared promising when administered via intranasal (i.n.) injection in proof-of-concept trials with adult BALB/c mice.

(A) 0.5 mg PKR-Apaf DRACO administered i.n. to adult BALB/c mice penetrated the lungs and persisted over 24 hours. Averages of 3 mice per data point are plotted, and error bars show s.e.m. (B) PTD-PKR-Apaf, TAT-PKR-Apaf, and ARG-PKR-Apaf DRACOs administered i.n. on day 0 reduced the morbidity in mice challenged i.n. with 1 LD50 influenza H1N1 A/PR/8/34.

doi:10.1371/journal.pone.0022572.g010

Based on these encouraging initial animal trials, future work should be done to test and optimize antiviral efficacy, pharmacokinetics, and absence of toxicity in vitro and in vivo. Future experiments can further characterize and optimize dsRNA binding, apoptosis induction, cellular transduction, and other DRACO properties. More extensive trials are also needed to determine how long after infection DRACOs can be used successfully, or if DRACOs are useful against chronic viral infections without producing unacceptable levels of cell death in vivo.

DRACOs should be effective against numerous clinical and NIAID priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered. We have demonstrated that DRACOs are effective against viruses with DNA, dsRNA, positive-sense ssRNA, and negative-sense ssRNA genomes; enveloped and non-enveloped viruses; viruses that replicate in the cytoplasm and viruses that replicate in the nucleus; human, bat, and rodent viruses; and viruses that use a variety of cellular receptors (Table 1).




作者: huabin    時間: 2015-4-20 06:37

Materials and Methods

Ethics statement for mouse trials

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on Animal Care of MIT (Assurance Number: A-3125-01). Guidelines to minimize suffering were followed, and avertin anesthetic was used for intranasal procedures.

Cloning

E.F. Meurs provided PKR cDNA and Y. Shi donated human Apaf-1 cDNA. RNaseL1–335 sequence was cloned from HeLa cells. PKR-E3L, FADD1–90 (with L75A and L76A to prevent spontaneous self-association [18]) and murine Apaf-11–97 sequences came from BioBasic. Genes for DRACOs and controls were constructed using PCR and restriction cloning. TAT (YGRKKRRQRRR), PTD-4 (YARAAARQARA), and ARG (R9) tags were incorporated at N- and/or C-termini. Genes were inserted into pET100/D-TOPO (Invitrogen).

Protein production

Each vector was transformed into Rosetta BL21(DE3)pLysS E. coli (EMD Biosciences), bacteria were plated on Luria broth (LB) agar with 100 ?g ml?1 ampicillin and 34 ?g ml?1 chloramphenicol, and plates were incubated overnight at 37°C. One colony was inoculated into ampicillin-chloramphenicol LB and grown overnight (37°C, 225 r.p.m.), then diluted 1:30 into ampicillin-chloramphenicol LB and incubated (30°C, 225 r.p.m.) until OD600 reached 1.0. 0.5 mM isopropyl β-D-1-thiogalactopyranoside was added and flasks were incubated overnight. E. coli were recovered by centrifugation (5,000 r.p.m., 30 min., 4°C) and lysed by sonication, and His6-tagged proteins were purified using Ni-NTA agarose (Invitrogen) following the manufacturer's protocols. Proteins were eluted into 1.5× PBS with 300 mM imidazole and 10% (vol/vol) glycerol, concentrated with Amicon-15 (10 kDa cutoff, 3,000 g) to >5 mg/ml, and filter-sterilized. Protein concentrations were measured relative to BSA standards by Bradford assay (BioRad) and Gel Doc densitometry.

Cells

L929 (CCL-1), NIH/3T3 (CRL-1658), BALB/3T3 (CCL-163), H1-HeLa (CRL-1958), MDCK (CCL-34), and Vero E6 (CRL-1586) (ATCC) and AD293 (Stratagene) were cultured in complete DMEM (Gibco). Normal human lung fibroblasts, small airway epithelial cells, osteoblasts, hepatocytes, and aortic smooth muscle cells (Lonza) were cultured in cell-specific media (Lonza).

Viruses

Dengue type 2 (New Guinea C, VR-1584), Amapari (VR-477), Tacaribe (VR-1272), Guama (Be An 277, VR-407; Be Ar 12590, VR-420), murine adenovirus (VR-550), Theiler's murine encephalomyelitis (VR-57), reovirus 3 (VR-824), influenza H1N1 A/PR/8/34 (ATCC VR-1469), influenza H1N1 A/WS/33 (ATCC VR-1520), rhinovirus 1B (VR-481), rhinovirus 2 (VR-482), rhinovirus 14 (VR-284), and rhinovirus 30 (VR-505) were obtained from ATCC. Adenovirus 5 was obtained from Stratagene. Influenza A/PR/8/34 for animal trials was donated by P. Palese.

Cell assays

Contact-inhibited cells were grown to 50–80% confluence and non-contact inhibited cells to 20–50% confluence in 96-well plates with 100 ?l/well medium. DRACOs or controls were added to columns of wells, 8 wells/column. Except in Figs. 2 and S2, 0.4–1% (vol/vol) Roche FuGene 6 was co-administered with DRACOs and controls to optimize cellular uptake. Wells received virus approximately 24 hours after DRACO unless otherwise noted. On selected days, cell viability in each plate was measured using CellTiter 96 (Promega). Assay schedules, viral doses, and other parameters were optimized for different cell/virus systems. Micrographs were taken in 24-well plates under similar conditions.

DRACO cell penetration assays

Cells in 24-well plates were incubated with DRACOs for varying lengths of time, then trypsinized, washed thoroughly in PBS, and lysed. Lysate from approximately 105 cells was loaded in each lane. DRACOs were detected via westerns using mouse anti-His6 (Invitrogen) and goat anti-mouse IgG HRP (Jackson).

Apoptosis assays

70% confluent 96-well L929 plates were treated with 10 ?M Z-VAD-FMK pan-caspase inhibitor or 20 ?M Z-LEHD-FMK caspase-9 inhibitor (R&D Systems), then 75 ?M camptothecin (Calbiochem) or 100 nM DRACOs with or without 25 ng/well poly(I):poly(C) dsRNA (Sigma) transfected using FuGene (Roche) following manufacturers' protocols. After 24 hours, apoptosis was determined using Caspase-Glo 3/7 (Promega).

Viral titers

Titers were determined by serial dilutions onto 96-well NHLF (for rhinovirus 1B) or H1-HeLa (for rhinovirus 14) plates, with 8 wells per 10-fold dilution and with the number of wells exhibiting CPE measured 5 dpi. Reed-Muench titers were calculated from the results (1 TCID50≈0.7 pfu). Error bars indicate s.e.m. from 3 trials.

Statistical analysis

CellTiter 96 cell viabilities were normalized to 100% for untreated uninfected and 0% for untreated virus-killed cells. Graphs indicate averages (n = 8) with s.e.m. Experiments were repeated at least 3 times with similar results.

Mouse trials

7-week-old female BALB/c mice (Charles River) received DRACO i.n. (~0.5 mg in 50 ?l) or i.p. (0.8–2.5 mg in 200 ?l). Mice were challenged i.n. with 0.3–1.3 LD50 influenza H1N1 A/PR/8/34. Mice received DRACO i.p. once daily on days -1 and 1–3 and twice on day 0, or just one i.n. DRACO dose simultaneously with virus. Lungs were harvested on day 2 and viral titers determined by serial dilutions onto 96-well MDCK plates. For pharmacokinetics, organs were harvested at designated times, then sonicated into 1 ml PBS with 1% Triton X-100. 1 mg organ solution was mixed with 2× Laemmeli buffer, boiled 5 min., and run on a 10–20% SDS PAGE gel with a standard curve of purified DRACO, followed by western blots with anti-Apaf (Millipore) and HEP-labeled anti-rabbit IgG (Jackson Immunoresearch). Blots were developed with Pierce luminescent reagent and exposed to film. DRACO bands were quantitated by Gel Doc densitometry vs. the standards.


Supporting Information

Figure S1.

DRACOs entered normal human lung fibroblasts. NHLF cells were incubated overnight with 500 nM PTD-PKR-Apaf DRACO labeled with Lumio (Invitrogen), washed with Hank's balanced salt solution, and photographed with a fluorescent microscope to compare (A) untreated and (B) DRACO-treated cells. DRACOs appeared to be distributed throughout each cell in both the cytoplasm and the nucleus.

(TIF)

Figure S2.

FuGene co-administration with DRACOs improved cellular uptake and antiviral efficacy. (A) 100 nM DRACOs with PTD, TAT, and ARG protein transduction tags were effective against rhinovirus 1B in NHLF cells without FuGene co-administration. Cell viability was measured 3 days after infection with 130 pfu/well. (B) Co-administration of FuGene with DRACOs lowered the EC50 of DRACOs, as shown here for PTD-PKR Apaf DRACO against 130 pfu/well rhinovirus 1B in NHLFs.

(TIF)

Figure S3.

200 nM PTD-PKR-Apaf DRACO was effective against rhinovirus 1B in NHLF cells. Representative photographs were taken 20 days after challenge with 300 pfu/well. Scale bar = 50 ?m.

(TIF)

Figure S4.

DRACOs decreased the viral titer of rhinovirus 14 in H1-HeLa cells. One 120 nM dose of PTD-PKR-Apaf DRACO administered to cells 24 hours before or simultaneously with 10 pfu/well rhinovirus 14 eliminated any measurable titer 3 dpi. One DRACO dose administered 24 or 30 hours after infection halved the 3-dpi viral titer.

(TIF)

Figure S5.

200 nM PTD-PKR-Apaf DRACO was effective against murine adenovirus in L929 cells. Representative photographs were taken 15 days after challenge with 30 pfu/well. Scale bar = 25 ?m.

(TIF)

Figure S6.

200 nM PTD-PKR-Apaf DRACO was effective against murine encephalomyelitis in L929 cells. Representative photographs were taken 21 days after challenge with 50 pfu/well. Scale bar = 25 ?m.

(TIF)

Figure S7.

100 nM PTD-PKR-Apaf DRACO was effective against Amapari arenavirus in Vero E6 cells. Representative photographs were taken 11 days after challenge with 300 pfu/well. Scale bar = 100 ?m.

(TIF)

Figure S8.

100 nM PTD-PKR-Apaf DRACO was effective against Tacaribe arenavirus in Vero E6 cells. Photographs were taken 8 days after challenge with 140 pfu/well. Scale bar = 100 ?m.

(TIF)

Figure S9.

200 nM PTD-PKR-Apaf DRACO was effective against Guama Be An 277 bunyavirus in Vero E6 cells. Photographs were taken 4 days after challenge with 30 pfu/well. Scale bar = 100 ?m.

(TIF)

Figure S10.

200 nM PKR-Apaf DRACO was effective against dengue flavivirus in Vero E6 cells. Cell viability was measured 18 days after challenge with 16 pfu/well.

(TIF)

Figure S11.

100 nM PTD-PKR-Apaf DRACO was effective against dengue flavivirus in Vero E6 cells. Photographs were taken 7 days after challenge with 160 pfu/well. Scale bar = 100 ?m.

(TIF)

Figure S12.

DRACOs were effective against a broad spectrum of other viruses in a variety of cell types. Left four photos: 100 nM PKR-Apaf DRACO was effective against H1N1 influenza A/PR/8/34 in normal human hepatocytes. Untreated cells challenged with 105 pfu/well died within 3 days, whereas treated challenged cells were cultured for 72 days with no sign of viral CPE. Center four photos: 100 nM PTD-PKR-Apaf DRACO was effective against reovirus 3 in BALB/3T3 murine cells. Photographs were taken 11 days after challenge with 30 pfu/well reovirus 3. Right four photos: 200 nM PTD-2×E3L-Apaf DRACO was effective against adenovirus 5 in human embryonic kidney AD293 cells. Fluorescent microscope photographs were taken 4 days after challenge with 25 pfu/well adenovirus 5 expressing enhanced green fluorescent protein (EGFP). Scale bars = 50 ?m.

(TIF)

作者: huabin    時間: 2015-4-20 06:38


Acknowledgments

We thank

E.F. Meurs (Institut Pasteur) for PKR cDNA,
Y. Shi (Princeton University) for human Apaf-1 cDNA,
P. Palese (Mount Sinai School of Medicine) for A/PR/8/34 influenza,
and MIT Division of Comparative Medicine for mouse facilities and advice.

We are grateful to

G. Johnson for assistance in the lab,
B. Lemus for producing the EGFP adenovirus,
and E. Schwoebel, C. Cabrera, G. Beltz, and S. Chiang for helpful discussions.

Author Contributions

Conceived and designed the experiments:
THR. Performed the experiments: THR. Wrote the paper: THR. Designed DRACOs: THR. Conducted cell assays: CZ TB. Lead for animal trials: TB. Lead for protein production and purification: SW. Assisted with experiments: JP BZ.
--------------------------------------------------


References

•Kr?usslich HG, Bartenschlager R, editors. (2009) Handbook of Experimental Pharmacology 189: Antiviral Strategies. Berlin: Springer.
•Demberg T, Robert-Guroff M (2009) Mucosal immunity and protection against HIV/SIV infection: strategies and challenges for vaccine design. Int Rev Immunol 28: 20–48. Find this article online
•Boomker JM, de Leij LF, The TH, Harmsen MC (2005) Viral chemokine-modulatory proteins: tools and targets. Cytokine Growth Factor Rev 16: 91–103. Find this article online
•Knipe DM, Howley PM, editors. (2006) Fields Virology, 5th ed. Philadelphia: Lippincott Williams & Wilkins.
•Samuel CE (2004) Knockdown by RNAi—proceed with caution. Nat Biotechnol 22: 280–282. Find this article online
•Sadler AJ, Williams BRG (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8: 559–568. Find this article online
•Yoneyama M, Fujita T (2010) Recognition of viral nucleic acids in innate immunity. Rev Med Virol 20: 4–22. Find this article online
•Sadler AJ, Williams BR (2007) Structure and function of the protein kinase R. Curr Top Microbiol Immunol 316: 253–292. Find this article online
•Wu S, Kaufman RJ (1996) Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR). J Biol Chem 271: 1756–1763. Find this article online
•Hovanessian AG, Justesen J (2007) The human 2′-5′oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89: 779–788. Find this article online
•Bisbal C, Silverman RH (2007) Diverse functions of RNase L and implications in pathology. Biochimie 89: 789–798. Find this article online
•Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373–84. Find this article online
•Placido D, Brown BA, Lowenhaupt K, Rich A, Athanasiadis A (2007) A left-handed RNA double helix bound by the Zα domain of the RNA-editing enzyme ADAR1. Structure 15: 395–404. Find this article online
•Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284: 21777–21781. Find this article online
•Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, et al. (1999) Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399: 549–557. Find this article online
•Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14: 56–65. Find this article online
•Eberstadt M, Huang B, Chen Z, Meadows RP, Ng SC, et al. (1998) NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392: 941–945. Find this article online
•Muppidi JR, Lobito AA, Ramaswamy M, Yang JK, Wang L, et al. (2006) Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis. Cell Death Differ 13: 1641–50. Find this article online
•Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89: 1–47. Find this article online
•Weber F, Haller O (2007) Viral suppression of the interferon system. Biochimie 89: 836–842. Find this article online
•Langland JO, Kash JC, Carter V, Thomas MJ, Katze MG, et al. (2006) Suppression of proinflammatory signal transduction and gene expression by the dual nucleic acid binding domains of the vaccinia virus E3L proteins. J Virol 80: 10083–10095. Find this article online
•Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathogens 4: e1000018. Find this article online
•Postigo A, Ferrer PE (2009) Viral inhibitors reveal overlapping themes in regulation of cell death and innate immunity. Microbes Infect 11: 1071–1078. Find this article online
•Nogal ML, González de Buitrago G, Rodríguez C, Cubelos B, Carrascosa AL, et al. (2001) African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 75: 2535–43. Find this article online
•Callus BA, Vaux DL (2007) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14: 73–78. Find this article online
•Rider TH (2006) Anti-pathogen treatments. U.S. Patent 7,125,839.
•Rider TH (2009) Anti-pathogen treatments. U.S. Patent 7,566,694.
•Gump JM, Dowdy SF (2007) TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 13: 443–448. Find this article online
•Ho A, Schwarze SR, Mermelstein SJ, Waksman G, Dowdy SF (2001) Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res 61: 474–477. Find this article online
•Goun EA, Pillow TH, Jones LR, Rothbard JB, Wender PA (2006) Molecular transporters: synthesis of oligoguanidinium transporters and their application to drug delivery and real-time imaging. ChemBioChem 7: 1497–1515. Find this article online


作者: huabin    時間: 2015-4-20 06:39

Jerry E. Chipuk, Gavin P. McStay, Archana Bharti,ET AL:Sphingolipid Metabolism Cooperates with BAK and BAX to Promote the Mitochondrial Pathway of Apoptosis,Cell, Volume 148, Issue 5, 988-1000, 2 March 2012

•Highlights
•Mitochondria devoid of heterotypic membranes are resistant to cytochrome c release
•Mitochondrial sphingolipids promote BAK/BAX activation and cytochrome c release
•Sphingosine-1-PO4 and hexadecenal coordinate BAK and BAX activation, respectively
•Inhibition of sphingolipid metabolism blocks cytochrome c release and apoptosis

Summary

Mitochondria are functionally and physically associated with heterotypic membranes, yet little is known about how these interactions impact mitochondrial outer-membrane permeabilization (MOMP) and apoptosis. We observed that dissociation of heterotypic membranes from mitochondria inhibited BAK/BAX-dependent cytochrome c (cyto c) release. Biochemical purification of neutral sphingomyelinases that correlated with MOMP sensitization suggested that sphingolipid metabolism coordinates BAK/BAX activation. Using purified lipids and enzymes, sensitivity to MOMP was achieved by in vitro reconstitution of the sphingolipid metabolic pathway. Sphingolipid metabolism inhibitors blocked MOMP from heavy membrane preparations but failed to influence MOMP in the presence of sphingolipid-reconstituted, purified mitochondria. Furthermore, the sphingolipid products, sphingosine-1-PO4 and hexadecenal, cooperated specifically with BAK and BAX, respectively. Sphingolipid metabolism was also required for cellular responses to apoptosis. Our studies suggest that BAK/BAX activation and apoptosis are coordinated through BH3-only proteins and a specific lipid milieu that is maintained by heterotypic membrane-mitochondrial interactions.
作者: huabin    時間: 2015-4-20 06:48
標題: 曲度: 哈默羅夫的靈魂出竅理論


曲度: 哈默羅夫的調諧客觀還原理論(Orch-OR)--靈魂出竅理論

1.靈魂之物質基礎:腦細胞內微管的量子態.
2.意識之本質是大腦內一台量子計算機的程序.意識是宇宙的一個組成部分.
3.人類靈魂之本質:是大腦內神經元細胞之間的交互作用.
4.Orch-OR理論概要:
在瀕死經歷中,微管失去了它們的量子態,但裡面的信息並沒有遭到破壞。也就是說,靈魂離開肉體,重回宇宙。哈默羅夫在紀錄片《科學頻道 -穿越蟲洞》中表示:「心臟停止跳動,血液停止流動,微管失去了它們的量子態,但微管內的量子信息並沒有遭到破壞,也無法被破壞,離開肉體后重新回到宇宙。如果患者蘇醒過來,這種量子信息又會重新回到微管,患者會說『我體驗了一次瀕死經歷』。如果沒有蘇醒過來,患者便會死亡,這種量子信息將存在於肉體外,以靈魂的形式。」

D.QU

鏈接:
http://news.dxy.cn/bbs/topic/18124558?ppg=4
作者: huabin    時間: 2015-4-20 07:22
本帖最後由 huabin 於 2015-4-20 07:25 編輯


跋:
細胞像一個小宇宙,裡面有很多種細胞器與外界有管道相通,結構異常複雜.它們的功能非常複雜且相互關聯,
細胞死亡通道(機制),人類研究了很多年,目前認識仍不很深入(包括當代研究者在內).
細胞死亡通道悖論,是我們提出的一個新概念.
本貼彙編了該領域研究大致進展情況(截止2010年底),對欲了解它來龍去脈的初學者或許有所幫助.是為跋.
D.QU
注: 本貼內容在國內最大的生命醫學純專業性網站相關欄目內貼出之後,被列為精華貼.







歡迎光臨 倍可親 (https://big5.backchina.com/) Powered by Discuz! X3.1