倍可親

新發現的大腦迴路控制對鹹味的厭惡

作者:change?  於 2023-11-22 03:50 發表於 最熱鬧的華人社交網路--貝殼村

通用分類:留學生活|已有1評論

Newly Discovered Brain Circuit Controls An Aversion to Salty Tastes

食鹽形式的鈉有助於使炸薯條成為美味小吃,使培根成為美味佳肴,但它也是我們身體正常運作的重要營養素,在肌肉運動和神經元信號傳導中發揮作用,以及許多其他重要過程。

體內含有適量的鈉非常重要,事實上,您大腦的某些部分會努力工作以確保您獲得所需的鹽。如果你突然想吃薯片,那可能是你的大腦在起作用。另一方面,如果你口渴,鹹味零食聽起來可能是你最最不想吃的東西。現在,加州理工學院科學家的新研究向我們展示了更多關於當鹽的味道令人厭惡或美味時大腦如何調節的信息。

「低濃度的鈉是可口的,而高濃度的鈉——例如海水——嘗起來很噁心,」生物學教授和遺產醫學研究所研究員 Yuki Oka(岡祐樹) 說。 「但當你真的需要鹽時,你不會介意不好的味道。鹽的適口性或『味道』會根據鹽的濃度和身體內部的鈉需求而變化。」

身體精心調節血鈉水平,使其保持在 135 至 145 毫摩爾的狹窄範圍內。這是通過精確控制鹽的消耗和保留來實現的。為了保持鈉含量精確平衡,大腦必須控制對鹽的吸引力和厭惡。 2019 年,Oka實驗室的研究人員發現了老鼠對鹽的渴望的大腦迴路。刺激這些位於頭骨底部後腦區域的「鹽食慾」神經元,會立即引發對鹹味食物的食慾。但調節厭惡鹹味的機制仍然沒有答案。

Yuki Oka實驗室的新發現揭示了小鼠大腦中獨特的神經迴路,負責調節對與鈉相關的負面味道的耐受性。這些神經元位於前腦,遠離鹽食慾神經元。與之前發現的鹽食慾神經元不同,耐受神經元的激活不會促使主動尋找鈉。相反,這些神經元的活動使小鼠能夠接受或耐受通常令人厭惡的高濃度鹽,以便有效補充體內的鈉水平。阻斷耐受神經元會導致小鼠排斥厭惡的鹽,即使鈉含量較低。前腦耐受性和後腦食慾迴路的同時運行對於維持體內鈉水平至關重要。

研究人員發現,耐受神經元與鹽食慾神經元並不直接相連,並且似乎獨立發揮作用。那麼,身體如何調節新發現的迴路的活動呢?

有趣的是,這項新研究表明,耐受神經元的表面有前列腺素 E2 (PGE2) 激素的受體,這表明它們的活動受到血液中循環的這種激素的調節。這是一個新的發現——通常與炎症有關的前列腺素此前並未與鈉攝入量相關。 Oka 實驗室的研究生、這項新研究的主要作者張亞萌表示:「前列腺素和鈉攝入量之間這種意想不到的關聯提出了關於炎癥狀態如何影響鈉攝入量的重要問題,為了解前列腺素和鈉攝入量之間的相互作用提供了新的見解。鈉含量和身體的促炎狀況。」

11 月 20 日發表在《細胞》雜誌上的一篇論文報道了這一結果。

這篇論文的標題是「平行神經通路控制鈉消耗和味覺效價」。研究生張亞萌為第一作者,加州理工學院的其他共同作者包括研究生王童童、前博士後學者 Allan-Hermann Pool(現為德克薩斯大學西南分校助理教授)、博士後學者劉璐、和前加州理工學院本科生Elin Kang。其他貢獻者來自 Spatial Genomics Inc(Bei Zhang、Liang Ding 和 Kirsten Frieda)和華盛頓大學(Richard Palmiter)。該研究得到了美國國立衛生研究院、阿爾弗雷德·P·斯隆基金會、紐約幹細胞基金會、愛德華·馬林克羅特基金會、傳統醫學研究所的支持。 Yuki Oka 是加州理工學院陳天橋和克麗絲陳神經科學研究所的附屬教員。


岡由紀  Yuki Oka
生物學教授;傳統醫學研究所研究員

2002 年,東京大學文學士;博士,2007年。助理教授,加州理工學院,2014-20;教授,2020年-;陳學者,2019-2022; HMRI 研究者,2021 年-。

研究總結
了解穩態調節動機行為的神經和分子基礎。
輪廓

研究興趣:穩態調節動機行為的神經和分子基礎。

我們研究的長期目標是了解大腦如何整合內部身體狀態和外部感覺信息來維持體內的穩態。

體內平衡是保持我們的內部環境恆定和最佳生存的基本功能。如果內部狀態偏離正常環境,大腦會檢測到這種變化並觸發補償反應,例如攝入行為和荷爾蒙分泌。大腦如何監測內部狀態,以及如何產生信號來促使我們做出適當的行為/生理反應?

我們的實驗室使用體液穩態作為模型系統來解決這些關鍵問題。內部水或鹽的消耗直接觸發特定的動機、口渴或鹽的食慾,進而驅動獨特的行為輸出(喝水和鹽的攝入)。這種直接因果關係為研究穩態調節的各個方面提供了一個理想的平台:(1)內部液體平衡的檢測,(2)大腦中消耗信號的處理,以及(3)將此類大腦信號轉化為特定的動機行為。我們的目標是通過結合遺傳學、藥理學、光遺傳學和光學/電生理記錄技術等多學科方法來解剖、可視化和控制每個步驟背後的神經迴路。

Jimmy O. Yang: Guess How Much?-2023 Special (Full Audio Version)

高興

感動

同情

搞笑

難過

拍磚

支持

鮮花

發表評論 評論 (1 個評論)

回復 change? 2023-11-22 03:50
Newly Discovered Brain Circuit Controls An Aversion to Salty Tastes

Sodium in the form of table salt helps make French fries a tasty snack and bacon a delicious indulgence, but it is also a vital nutrient for the proper functioning of our bodies, playing a role in the movement of your muscles, the signaling of your neurons, and many other important processes.

Having the right amount of sodium in your body is so crucial, in fact, that parts of your brain work hard to make sure you're getting the salt that you need. If you've ever been hit by a sudden craving for potato chips, that may have been your brain at work. On the other hand, if you're thirsty, salted snacks might sound like the last thing you to eat. Now, new research from Caltech scientists is showing us more about how the brain regulates when the flavor of salt is yuck or yum.

"Low sodium concentration is palatable, while higher concentrations—for example, ocean water—taste disgusting," says Yuki Oka, Professor of Biology and Heritage Medical Research Institute Investigator. "But when you're really in need of salt, you don't mind the bad taste. The palatability or 'tastiness' of salt changes based on its concentration and the body's internal sodium need."

The body meticulously regulates blood sodium levels to stay within a narrow range of 135 to 145 millimolar. This is accomplished through precise control of salt consumption and retention. To keep sodium levels precisely balanced, the brain must control both attraction and aversion to salt. In 2019, researchers in the Oka lab discovered the brain circuit that drives cravings for salt in mice. Stimulating these "salt-appetite" neurons, located at the base of the skull in a region called the hindbrain, triggered an immediate appetite for salty food. But the mechanisms regulating an aversion to salty tastes remained unanswered.

New findings from the Oka lab reveal a distinct neural circuit in the mouse brain responsible for regulating tolerance towards the negative taste associated with sodium. These neurons are located in the forebrain, far from the salt-appetite neurons. Unlike the previously identified salt-appetite neurons, activation of the tolerance neurons does not prompt active seeking of sodium. Instead, activity of these neurons enables mice to accept or tolerate high levels of salt that would usually be aversive, in order to efficiently replete sodium levels in the body. Blocking the tolerance neurons results in mice rejecting aversive salt, even if low on sodium. The simultaneous operation of forebrain tolerance and hindbrain appetite circuits is crucial for maintaining sodium levels within the body.

The researchers found that the tolerance neurons are not directly connected to the salt appetite neurons, and appear to function independently. How, then, does the body regulate the activity of the newly discovered circuits?

The new study shows that, intriguingly, the tolerance neurons have receptors for the hormone prostaglandin E2 (PGE2) on their surfaces, suggesting that their activity is modulated by this hormone circulating through the bloodstream. This is a novel revelation—prostaglandin, commonly associated with inflammation, had not previously been linked to sodium intake. According to Yameng Zhang, a graduate student in the Oka lab and the lead author of the new study, "This unexpected association between prostaglandin and sodium consumption raises important questions regarding how an inflammatory state might influence sodium intake, offering new insights into the interplay between sodium levels and the body's pro-inflammatory condition."

The results are reported in a paper appearing in the journal Cell on November 20.

The paper is titled "Parallel Neural Pathways Control Sodium Consumption and Taste Valence." A graduate student, Yameng Zhang is the first author, with additional co-authors from Caltech including graduate student Tongtong Wang, former postdoctoral scholar Allan-Hermann Pool (now an assistant professor at the University of Texas, Southwestern), postdoctoral scholar Lu Liu, and former Caltech undergraduate Elin Kang. Other contributors hail from Spatial Genomics Inc (Bei Zhang, Liang Ding, and Kirsten Frieda) and the University of Washington (Richard Palmiter). The study was supported by the National Institutes of Health, the Alfred P. Sloan Foundation, the New York Stem Cell Foundation, the Edward Mallinckrodt Foundation, the Heritage Medical Research Institute. Yuki Oka is an affiliated faculty member of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.

facelist doodle 塗鴉板

您需要登錄后才可以評論 登錄 | 註冊

關於本站 | 隱私權政策 | 免責條款 | 版權聲明 | 聯絡我們

Copyright © 2001-2013 海外華人中文門戶:倍可親 (http://big5.backchina.com) All Rights Reserved.

程序系統基於 Discuz! X3.1 商業版 優化 Discuz! © 2001-2013 Comsenz Inc.

本站時間採用京港台時間 GMT+8, 2025-10-25 00:43

返回頂部