倍可親

量子競技最新: 芝加哥大學團隊發現了調諧量子信號的創新方法

作者:change?  於 2019-12-9 02:48 發表於 最熱鬧的華人社交網路--貝殼村

通用分類:博你一笑



Scientists in quantum lab

(左起)研究生苗凱文(Kevin Miao),克瑞斯 安德森(Chris Anderson)和亞歷山大 薄若紗(Alexandre Bourassa)在Pritzker分子工程學院監測量子實驗。

經過數十年的小型化,我們用於計算機和現代技術的電子組件現已開始達到基本極限。面對這一挑戰,世界各地的工程師和科學家都在轉向一種全新的範例:量子信息技術。

通常認為,量子技術利用了在原子級上控制粒子的奇怪規則,通常認為它過於精緻,無法與我們每天在手機,筆記本電腦和汽車中使用的電子設備共存。但是,芝加哥大學普利茲克分子工程學院的科學家宣布了一項重大突破:量子態可以集成和控制在由碳化硅製成的常用電子設備中。

首席研究員David Awschalom說:「在商業電子產品中創建和控制高性能量子比特的能力令人驚訝,」 UChicago分子工程的Liew家族教授,量子技術的先驅David Awschalom說。 「這些發現改變了我們對開發量子技術的思考方式,也許我們可以找到一種方法來利用當今的電子技術來製造量子設備。」

在《科學》與《科學進展》上發表的兩篇論文中,Awschalom的小組證明了它們可以電控制嵌入碳化硅中的量子態。與科學家通常需要用於量子實驗的異質材料(例如超導金屬,懸浮原子或鑽石)相比,這一突破可能提供了一種更輕鬆地設計和構建量子電子學的方法。

碳化硅中的這些量子態具有發射波長接近電信頻段的光的單個粒子的額外好處。 「這使它們非常適合通過同一光纖網路進行長距離傳輸,該光纖網路已經在全球範圍內傳輸了90%的所有國際數據,」阿貢國家實驗室的高級科學家,芝加哥量子交易所主管Awschalom說。

此外,與現有電子設備結合使用時,這些輕質顆粒可以獲得令人興奮的新特性。例如,在《科學進展》的論文中,該團隊能夠創建Awschalom所謂的「量子FM收音機」;就像將音樂傳輸到您的汽車收音機一樣,量子信息可以在非常長的距離內發送。

該論文的第一作者,研究生凱文·苗(Kevin Miao)說:「所有理論都表明,為了在一種材料中實現良好的量子控制,它應該是純凈的且沒有波動的場。」 「我們的結果表明,通過適當的設計,設備不僅可以減輕這些雜質,還可以創建以前無法實現的其他控制形式。」


在《科學》雜誌的論文中,他們描述了解決量子技術中一個非常普遍的問題的第二項突破:雜訊。

該論文的共同第一作者,研究生克里斯·安德森說:「雜質在所有半導體器件中都很普遍,在量子水平上,這些雜質會通過創建嘈雜的電環境來擾亂量子信息。」 「對於量子技術來說,這是一個幾乎普遍的問題。」

但是,通過使用電子學的基本要素之一,即二極體,電子的單向開關,研究小組發現了另一個出乎意料的結果:量子信號突然變得無雜訊並且幾乎完全穩定。

「在我們的實驗中,我們需要使用激光,不幸的是,激光將周圍的電子束縛起來。這就像是帶有電子音樂椅的遊戲;當燈光熄滅時,一切都停止了,但是結構有所不同。」論文的另一位共同第一作者,研究生亞歷山德拉·波拉薩(Alexandre Bourassa)說。 「問題在於電子的這種隨機配置會影響我們的量子態。但是我們發現,施加電場會將電子從系統中移出並使它更加穩定。」

通過將量子力學的奇異物理學與發達的經典半導體技術相結合,Awschalom及其團隊正在為即將到來的量子技術革命鋪平道路。

Awschalom說:「這項工作使我們向能夠在全球光纖網路中存儲和分佈量子信息的系統的實現邁進了一步。」 「這樣的量子網路將帶來一類新穎的技術,這些技術可以創建無法破解的通信通道,單電子態的隱形傳送以及量子網際網路的實現。」

為了進行研究,該團隊使用了芝加哥材料研究中心和普利茲克納米製造工廠。 Awschalom還與芝加哥大學的Polsky創業與創新中心合作,以推動這些發現。

引用文獻:

「集成在可擴展半導體器件中的單自旋的電光控制」,Science,Anderson和Bourassa等,2019年12月6日。
「具有碳化硅中自旋的電驅動光學干涉儀。」《科學進展》,苗等人,2019年11月22日。
資金來源:國家科學基金會,國防部,空軍科學研究所,海軍研究處,國防高級研究計劃局,日本科學促進會,瑞典能源署和瑞典研究理事會,卡爾·Tryggers科學研究基金會,克努特和愛麗絲·沃倫伯格基金會。



UChicago team discovers innovative way to tune quantum signals

After decades of miniaturization, the electronic components we』ve relied on for computers and modern technologies are now starting to reach fundamental limits. Faced with this challenge, engineers and scientists around the world are turning toward a radically new paradigm: quantum information technologies.  

Quantum technology, which harnesses the strange rules that govern particles at the atomic level, is normally thought of as much too delicate to coexist with the electronics we use every day in phones, laptops and cars. However, scientists with the University of Chicago』s Pritzker School of Molecular Engineering announced a significant breakthrough: Quantum states can be integrated and controlled in commonly used electronic devices made from silicon carbide.

「The ability to create and control high-performance quantum bits in commercial electronics was a surprise,」 said lead investigator David Awschalom, the Liew Family Professor in Molecular Engineering at UChicago and a pioneer in quantum technology. 「These discoveries have changed the way we think about developing quantum technologies—perhaps we can find a way to use today』s electronics to build quantum devices.」


Prof. David Awschalom

In two papers published in Science and Science Advances, Awschalom』s group demonstrated they could electrically control quantum states embedded in silicon carbide. The breakthrough could offer a means to more easily design and build quantum electronics—in contrast to using exotic materials scientists usually need to use for quantum experiments, such as superconducting metals, levitated atoms or diamonds. 

These quantum states in silicon carbide have the added benefit of emitting single particles of light with a wavelength near the telecommunications band. 「This makes them well suited to long-distance transmission through the same fiber-optic network that already transports 90% of all international data worldwide,」 said Awschalom, senior scientist at Argonne National Laboratory and director of the Chicago Quantum Exchange.

Moreover, these light particles can gain exciting new properties when combined with existing electronics. For example, in the Science Advances paper, the team was able to create what Awschalom called a 「quantum FM radio;」 in the same way music is transmitted to your car radio, quantum information can be sent over extremely long distances. 

「All the theory suggests that in order to achieve good quantum control in a material, it should be pure and free of fluctuating fields,」 said graduate student Kevin Miao, first author on the paper. 「Our results suggest that with proper design, a device can not only mitigate those impurities, but also create additional forms of control that previously were not possible.」

「This work brings us one step closer to the realization of systems capable of storing and distributing quantum information across the world』s fiber-optic networks.」
—David Awschalom, Liew Family Professor in Molecular Engineering

In the Science paper, they describe a second breakthrough that addresses a very common problem in quantum technology: noise.

「Impurities are common in all semiconductor devices, and at the quantum level, these impurities can scramble the quantum information by creating a noisy electrical environment,」 said graduate student Chris Anderson, a co-first author on the paper. 「This is a near-universal problem for quantum technologies.」

But, by using one of the basic elements of electronics—the diode, a one-way switch for electrons—the team discovered another unexpected result: The quantum signal suddenly became free of noise and was almost perfectly stable.

「In our experiments we need to use lasers, which unfortunately jostle the electrons around. It』s like a game of musical chairs with electrons; when the light goes out everything stops, but in a different configuration,」 said graduate student Alexandre Bourassa, the other co-first author on the paper. 「The problem is that this random configuration of electrons affects our quantum state. But we found that applying electric fields removes the electrons from the system and makes it much more stable.」

By integrating the strange physics of quantum mechanics with well-developed classical semiconductor technology, Awschalom and his group are paving the way for the coming quantum technology revolution.

「This work brings us one step closer to the realization of systems capable of storing and distributing quantum information across the world』s fiber-optic networks,」 Awschalom said. 「Such quantum networks would bring about a novel class of technologies allowing for the creation of unhackable communication channels, the teleportation of single electron states and the realization of a quantum internet.」

For its research, the team used the Chicago Materials Research Center and the Pritzker Nanofabrication Facility. Awschalom is also working with the Polsky Center for Entrepreneurship and Innovation at the University of Chicago to advance these discoveries.

Citations:

Funding: National Science Foundation, Department of Defense, Air Force Office of Scientific Research, Office of Naval Research, Defense Advanced Research Projects Agency, Japan Society for the Promotion of Science, Swedish Energy Agency and Swedish Research Council, Carl Tryggers Foundation for Scientific Research, Knut and Alice Wallenberg Foundation.

David Awschalom Talks to PBS News Hour About the Race to Develop Quantum Technology

量子競賽,中國領先?




1

高興

感動

同情

搞笑

難過

拍磚

支持

鮮花

剛表態過的朋友 (1 人)

評論 (0 個評論)

facelist doodle 塗鴉板

您需要登錄后才可以評論 登錄 | 註冊

關於本站 | 隱私權政策 | 免責條款 | 版權聲明 | 聯絡我們

Copyright © 2001-2013 海外華人中文門戶:倍可親 (http://big5.backchina.com) All Rights Reserved.

程序系統基於 Discuz! X3.1 商業版 優化 Discuz! © 2001-2013 Comsenz Inc.

本站時間採用京港台時間 GMT+8, 2025-6-15 06:08

返回頂部