|
我們還需要進行元分析,在同樣的基準上對比所有的深度學習模型。
6. 參考文獻
[1] A. Singhal and J. Srivastava, 「Research dataset discovery from research publications using web context,」 Web Intell., vol. 15, no. 2, pp. 81–99, 2017.
[2] A. Singhal, R. Kasturi, and J. Srivastava, 「DataGopher: Context-based search for research datasets,」 in Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration, IEEE IRI 2014, 2014, pp. 749–756.
[3] A. Singhal, 「Leveraging open source web resources to improve retrieval of low text content items,」 ProQuest Diss. Theses, p. 161, 2014.
[4] A. Singhal, R. Kasturi, V. Sivakumar, and J. Srivastava, 「Leveraging Web intelligence for finding interestingresearch datasets,」 in Proceedings - 2013 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2013, 2013, vol. 1, pp. 321–328.
[5] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, 「Recommender system application developments: A survey,」 Decis. Support Syst., vol. 74, pp. 12–32, 2015.
[6] S. Lakshmi and T. Lakshmi, 「Recommendation Systems: Issues and challenges,」 Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 4, pp. 5771–5772, 2014.
[7] Y. LeCun, Y. Bengio, and G. Hinton, 「Deep learning,」 Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[8] A. van den Oord, S. Dieleman, and B. Schrauwen, 「Deep content-based music recommendation,」 Electron. Inf. Syst. Dep., p. 9, 2013.
[9] X. Wang and Y. Wang, 「Improving Content-based and Hybrid Music Recommendation using Deep Learning,」 MM, pp. 627–636, 2014.
[10] J. Tan, X. Wan, and J. Xiao, 「A Neural Network Approach to Quote Recommendation in Writings,」 Proc. 25th ACM Int. Conf. Inf. Knowl. Manag. - CIKM 』16, pp. 65–74, 2016.
[11] H. Lee, Y. Ahn, H. Lee, S. Ha, and S. Lee, 「Quote Recommendation in Dialogue using Deep Neural Network,」 in Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval - SIGIR 』16, 2016, pp. 957–960.
[12] T. Bansal, D. Belanger, and A. McCallum, 「Ask the GRU,」 in Proceedings of the 10th ACM Conference on Recommender Systems - RecSys 』16, 2016, pp. 107– 114.
[13] L. Zheng, V. Noroozi, and P. S. Yu, 「Joint Deep Modeling of Users and Items Using Reviews for Recommendation,」 2017.
[14] X. Wang et al., 「Dynamic Attention Deep Model for Article Recommendation by Learning Human Editors』 Demonstration,」 in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 』17, 2017, pp. 2051– 2059.
[15] H. Wang, N. Wang, and D.-Y. Yeung, 「Collaborative Deep Learning for Recommender Systems,」 in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 1235–1244.
[16] S. Li, J. Kawale, and Y. Fu, 「Deep Collaborative Filtering via Marginalized Denoising Auto-encoder,」 in Proceedings of the 24th ACM International on Conference on Information and Knowledge Management - CIKM 』15, 2015, pp. 811–820.
[17] R. Devooght and H. Bersini, 「Collaborative Filtering with Recurrent Neural Networks,」 Aug. 2016.
[18] A. K. Balazs Hidasi, 「Session-based Recommendation with Recurrent Neural Networks,」 ICLR, pp. 1–10, 2016.
[19] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk, 「Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations,」 in Proceedings of the 10th ACM Conference on Recommender Systems - RecSys 』16, 2016, pp. 241–248.
[20] D. Jannach and M. Ludewig, 「When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation,」 in Proceedings of the Eleventh ACM Conference on Recommender Systems - RecSys 』17, 2017, pp. 306–310.
[21] H.-J. Xue, X.-Y. Dai, J. Zhang, S. Huang, and J. Chen, 「Deep Matrix Factorization Models for Recommender Systems *,」 2017.
[22] T. Ebesu and Y. Fang, 「Neural Semantic Personalized Ranking for item cold-start recommendation,」 Inf. Retr. J., vol. 20, no. 2, pp. 109–131, 2017.
[23] S. Cao, N. Yang, and Z. Liu, 「Online news recommender based on stacked auto-encoder,」 in Proceedings - 16th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2017, 2017, pp. 721–726.
[24] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, 「Neural Collaborative Filtering,」 in Proceedings of the 26th International Conference on World Wide Web - WWW 』17, 2017, pp. 173–182.
[25] R. Van Den Berg, T. N. Kipf, and M. Welling, 「Graph Convolutional Matrix Completion,」 arXiv, 2017.
[26] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, 「Collaborative Denoising Auto-Encoders for Top-N Recommender Systems,」 in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining - WSDM 』16, 2016, pp. 153–162.
[27] G. Sottocornola, F. Stella, M. Zanker, and F. Canonaco, 「Towards a deep learning model for hybrid recommendation,」 in Proceedings of the International Conference on Web Intelligence - WI 』17, 2017, pp. 1260–1264.
[28] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, 「A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems,」 Aaai, pp. 1309– 1315, 2017.
[29] D. Kim, C. Park, J. Oh, and H. Yu, 「Deep hybrid recommender systems via exploiting document context and statistics of items,」 Inf. Sci. (Ny)., vol. 417, pp. 72– 87, 2017.
[30] H. Liang and T. Baldwin, 「A Probabilistic Rating Autoencoder for Personalized Recommender Systems,」 in Proceedings of the 24th ACM International on Conference on Information and Knowledge Management - CIKM 』15, 2015, pp. 1863–1866.
[31] S. P. Chatzis, P. Christodoulou, and A. S. Andreou, 「Recurrent Latent Variable Networks for Session-Based Recommendation,」 in Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems - DLRS 2017, 2017, pp. 38–45.
[32] V. Bogina and T. Kuflik, 「Incorporating dwell time in session-based recommendations with recurrent Neural networks,」 in CEUR Workshop Proceedings, 2017, vol. 1922, pp. 57–59.
[33] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, 「Convolutional Matrix Factorization for Document Context-Aware Recommendation,」 in Proceedings of the 10th ACM Conference on Recommender Systems - RecSys 』16, 2016, pp. 233–240.
[34] V. Kumar, D. Khattar, S. Gupta, and M. Gupta, 「Deep Neural Architecture for News Recommendation,」 in Working Notes of the 8th International Conference of the CLEF Initiative, Dublin, Ireland. CEUR Workshop Proceedings, 2017.
[35] S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu, 「On Deep Learning for Trust-Aware Recommendations in Social Networks,」 IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 5, pp. 1164–1177, 2017.
[36] D. Ding, M. Zhang, S.-Y. Li, J. Tang, X. Chen, and Z.-H. Zhou, 「BayDNN: Friend Recommendation with Bayesian Personalized Ranking Deep Neural Network,」 in Conference on Information and Knowledge Management (CIKM), 2017, pp. 1479–1488.
[37] Z. Xu, C. Chen, T. Lukasiewicz, and Y. Miao, 「Hybrid Deep-Semantic Matrix Factorization for Tag-Aware Personalized Recommendation,」 Aug. 2017.
[38] B. Bai, Y. Fan, W. Tan, and J. Zhang, 「DLTSR: A Deep Learning Framework for Recommendation of Long-tail Web Services,」 IEEE Trans. Serv. Comput., pp. 1–1, 2017.
[39] H. Soh, S. Sanner, M. White, and G. Jamieson, 「Deep Sequential Recommendation for Personalized Adaptive User Interfaces,」 in Proceedings of the 22nd International Conference on Intelligent User Interfaces - IUI 』17, 2017, pp. 589–593.
[40] Z. Xu, C. Chen, T. Lukasiewicz, Y. Miao, and X. Meng, 「Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling,」 in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management - CIKM 』16, 2016, pp. 1921– 1924.
機器之心推出「Synced Machine Intelligence Awards」2017,希望通過四大獎項記錄這一年人工智慧的發展與進步,傳遞行業啟示性價值。
|
|