最後實驗的結果,最有優勢的策略,不是好好先生,也不是惡棍,而是我們熟知的一報還一報(Tit for tat)。一報還一報是這樣一種策略:在一開始時,它總是選擇合作,然後,它在下一輪中選擇的正是另一位參與者在上一輪中的選擇。比如,第一輪它選擇了合作,但另一參與者選擇了背叛,那麼第二輪時它也將選擇背叛;如果第一輪中另一參與者選擇了合作,那它第二輪時也將選擇合作。在計算機的模擬中,這樣的策略無論在與其它什麼策略相處時,都能有較好的(雖然不一定是最好的)表現,並且平均得分最高。其它策略則總是有一些重大缺陷,如好好先生在與另一位好好先生博弈時,可能兩人都會受益,但在和惡棍博弈時則將輸得很慘;惡棍和好好先生博弈時雖然能佔便宜,但和其它惡棍博弈時則將雙輸。當一個群體中各類人群並存時,其它策略都將逐漸被淘汰,最後一報還一報會倖存下來並保持穩定。
然而,一報還一報也並非完美無缺,甚至可以設計一些專門針對它的策略,比如,如果有一種「接近一報還一報」(Almost tit for tat)策略,它在很多方面都和一報還一報表現得一模一樣,唯一的區別是,它會偶然地背叛一次,除此之外,它一直是一個堅定的一報還一報策略實行者。面對這樣的參與者時,在那一次偶然的背叛之後,兩人會陷入一次又一次相互背叛的死循環(冤冤相報),行為與結果類似於兩個惡棍在博弈。所幸的是,對這個缺點也可以進行修正,可以設計出「另一種接近一報還一報」策略,這種策略在很多方面與一報還一報表現一模一樣,唯一的區別是,面對其它參與者的背叛,它有時(按一定的概率,比如10%)會寬恕。這樣,即便它在面對「接近一報還一報」時,多次博弈之後,即使中間經歷了相互背叛的循環,只要它首先進行寬恕了,兩人還是會進入相互合作的軌道。